
Computational Visual Media
https://doi.org/10.1007/s41095-019-0129-0 Vol. 5, No. 1, March 2019, 33–44

Research Article

Automated pebble mosaic stylization of images

Lars Doyle1 (�), Forest Anderson1, Ehren Choy1, and David Mould1

c© The Author(s) 2019.

Abstract Digital mosaics have usually used regular
tiles, simulating historical tessellated mosaics. In this
paper, we present a method for synthesizing pebble
mosaics, a historical mosaic style in which the tiles are
rounded pebbles. We address both the tiling problem,
of distributing pebbles over the image plane so as to
approximate the input image content, and the problem
of geometry, creating a smooth rounded shape for each
pebble. We adopt simple linear iterative clustering (SLIC)
to obtain elongated tiles conforming to image content,
and smooth the resulting irregular shapes into shapes
resembling pebble cross-sections. Then, we create an
interior and exterior contour for each pebble and solve
a Laplace equation over the region between them to
obtain height-field geometry. The resulting pebble set
approximates the input image while representing full
geometry that can be rendered and textured for a highly
detailed representation of a pebble mosaic.

Keywords non-photorealistic rendering; digital mosaics;
image stylization; segmentation; image
processing

1 Introduction
Mosaics are an art form that date back thousands of
years. The earliest historical mosaics were pebble
mosaics [1, 2], whose component pebbles were
heterogeneous in size and shape. Pebble mosaics
paved floors with pebbles, arranged so as to form
an image or design. The craft of pebble mosaics
continues into the 21st century [3] with new pebble
mosaics being built by hobbyists and city planners.

Pebble mosaics, as well as the contemporaneous
chip mosaics made of fragments of quarried stone [1],

1 Carleton University, Ottawa, Canada. E-mail: lars.doyle@
carleton.ca (�).

Manuscript received: 2018-12-21; accepted: 2019-01-16

use entirely irregular tiles. The archetypal mosaic
is the tessellated mosaic, made of regular cubes of
stone (tesserae). Such tessellated mosaics are the
most familiar kind of mosaics and have been the most
thoroughly studied in computer graphics. Tessellated
mosaics have been dated to the third century BCE.
However, pebble mosaics appeared in Greece hundreds
of years earlier [1] and have not received much attention
in computer graphics. In this paper, we propose a novel
algorithm for constructing irregular pebble mosaics,
using a variant of simple linear iterative clustering
(SLIC) [4] to obtain an initial segmentation, smoothing
the resulting boundaries, and using a Poisson solver
to interpolate a smooth height field for each pebble
which we can then render using conventional lighting
and texturing.

For a mosaic to successfully convey an image, it
is important to align tile edges with image edges.
The use of square tiles imposes severe restrictions on
the detail level that can be captured; our irregular
tiles can convey considerable detail, including interior
edges of figures, something often neglected in previous

Fig. 1 Fragment of a pebble mosaic floor dating from the 4th century
BCE.

33

34 L. Doyle, F. Anderson, E. Choy, et al.

Fig. 2 An image progressing through our system. Left to right: input, segmentation, boundary smoothing, pebble geometry, lighting.

techniques. Our algorithm is entirely automatic; users
can optionally guide the output by annotating the
input image with an importance map or by manually
adding decorative features in a preprocessing phase.

This paper makes two main contributions. Firstly,
we adapt SLIC so that it is suitable for creating
irregular, elongated pebble shapes. We estimate the
local direction of the image and then bias the SLIC
clustering distance according to a local coordinate
system, producing natural-looking size and aspect
ratio variations. Secondly, we compute smooth pebble
geometry for the resulting tiles. We use the Laplace
equation, setting up constraints and then solving to
meet them, to produce smooth shapes resembling river
pebbles. By creating and rendering this geometry, we
bridge photorealism and non-photorealism.

This paper is organized as follows. Section 2
reviews previous work on computer-generated
mosaics. Section 3 describes our algorithm in detail.
Section 4 shows images created using our method
and discusses its benefits and drawbacks. Finally,
Section 5 summarizes the work and suggests future
directions.

2 Related work
Battiato et al. [5] proposed a taxonomy of digital
mosaic research in which the two initial branches
divide tile mosaics from multi-picture mosaics. This
distinction stems from the nature of the basic picture
elements. In tile mosaics, the image plane is divided
into small regions, each individually colored to
represent the underlying input image. In contrast,
multi-picture mosaics employ a dataset of images that
are used to assemble an approximation to the input
image based on local color and structure similarity;
the typical result is a photomosaic [6]. We situate
our current work within the tile mosaic branch.

In the seminal Paint by Numbers [7], Haeberli
introduced many of the concepts that have since been
used for mosaic emulation. His idea of using Voronoi
diagrams for mosaics has been used in commercial

products and in subsequent research; centroidal
Voronoi diagrams (CVDs) are particularly common.
CVDs are often produced by Lloyd’s algorithm, a
relaxation process that repeatedly moves the Voronoi
centres to the centroids of their regions. The CVD
process has formed the basis for much work in mosaic
and stipple creation [8–10], since it is a good way to
distribute points on the plane.

Hausner [8] presented an iterative algorithm for
placing mosaic centres, using hardware-accelerated
CVDs to distribute tiles. Hausner also identified a
crucial issue in mosaics: tile edges should be aligned
with image edges. Hausner resolved this in his work
by having tiles move away from user-specified edges.
An alternative method for achieving edge alignment
was given by Elber and Wolberg [11], who arranged
rows of tiles along streamlines parallel to initial user-
specified curves. Yet another way of addressing edge
alignment was given by Di Blasi and Gallo [12], who
proposed to cut the rectangular tiles where they cross
image edges. Liu et al. [13] used graph cuts rather
than explicit edge detection to prevent tiles from
crossing image edges.

Within the multi-picture mosaic branch a thread
of research involves populating a set of container
shapes with tiles, generally without any intention of
providing interior image detail. Kim and Pellacini’s
Jigsaw Image Mosaic [14] is an example, where the
method produces an irregular tiling of the image plane
with predefined tiles, minimizing a set of error criteria
including tile overlap and color mismatch. More
recent work by Saputra et al. [15, 16] arranges figures
within the container shape while seeking an aesthetic
distribution rather than a full packing. Kwan et
al. [17] accelerated partial-shape matching, through
their pyramid of arc-length descriptor, for packing
irregular shapes.

Other methods for distributing primitives and tiling
the plane have been devised, and we briefly mention
a few others. Smith et al. [18] focussed on coherent
movement of tiles to create animated mosaics; later,
Dalal et al. [19] used Fourier transforms to find good

Automated pebble mosaic stylization of images 35

packings of input primitives. Kaplan and Salesin [20,
21] worked on automatically controlling tile shapes
to produce Escher-like tilings in which the tiles were
close to an input goal shape. Similarly, Goferman et
al. [22] extracted irregular regions of interest from a
series of photographs and packed them in a puzzle-like
manner within a chosen aspect ratio. Photo collage
is a related area, but removes the constraint that
an underlying image or containing shape must be
represented. Using convolutional neural networks,
Liu et al. [23] produced photo collages by grouping
together images with similar content over the image
plane.

3 Constructing pebble mosaics
In our approach, we tile the image plane using
heterogeneous, 3D pebble-shaped objects. As in
previous methods [8, 11, 12], our tiles avoid crossing
image boundaries and are oriented to align with a
direction map. However, we take a different approach
towards this goal. Section 3.1 describes how we
modify the simple linear iterative clustering (SLIC)
algorithm [4] to produce oriented pebble shapes. We
take advantage of the inherent boundary-avoiding
quality of SLIC and thus have no need for explicit edge
detection nor associated parameters or thresholds.
We describe how we simplify the boundaries of the
initial segmentation in Section 3.2 to produce smooth,
“river-worn” pebbles. Finally, in Section 3.3 we
construct a height field from the 2D boundaries to
extend pebbles into 3D, before applying lighting to
the resulting geometry. A schematic representation of
our algorithm pipeline in Fig. 3 shows how an input
image I is transformed into a pebble mosaic.

3.1 Segmentation
SLIC produces compact super-pixels by clustering
pixels into groups, based on colour and spatial
distance. Their tendency to adhere to image
boundaries is beneficial for describing image content
and forms the basis of our pebble shapes. In its
original formulation, the spatial distance of a pixel
p from a cluster center c can be described by an
offset vector �v = p − c, allowing us to compute the l2
distance as

Ds =
√

v2
x + v2

y (1)

where vx and vy are the components of �v parallel

Fig. 3 Pipeline of our proposed method.

to the x- and y-axes. It is often the case in nature
that pebbles are longer in one dimension than the
other, forming approximate, oval-like boundaries as
opposed to circular ones. As a first modification to
Eq. (1) we can apply different scaling factors to the x

and y components of �v. This results in the elongated
super-pixels that are shown in the top right image of
Fig. 4.

Artists often take advantage of pebble shapes
and will emphasize image edges by aligning the
long side of a pebble parallel to an edge. We can
approximate this effect with one further modification
to our distance metric. First, we construct a structure
tensor [24] at each super-pixel center by integrating
the matrix field, ∇I∇IT, weighted by a Gaussian
function. The tensor’s unit eigenvectors e1 and e2,
associated with eigenvalues λ1 � λ2, are parallel
and perpendicular to the smoothed image gradient.
We can now use these vectors as a new basis in our
distance calculation. Furthermore, applying a larger
weight to the component of �v parallel to e1 than
e2 allows super-pixels to spread tangent to image

36 L. Doyle, F. Anderson, E. Choy, et al.

Fig. 4 Top left: original SLIC. Top right: scaling vy in Eq. (1) by
α = 3. Bottom left: scaling �v · �b1 in Eq. (3) by α = 3. Bottom right:
using random scaling in Eq. (3).

edges. This effect can be seen in Fig. 4(bottom left).
In flat or corner regions, where there is inadequate
orientation information, we simply assign a default
direction. This assessment is made by thresholding
an orientation coherence estimate:

C =

√
λ1 − λ2

λ1 + λ2 + K
(2)

where K is a constant chosen to avoid division by
zero and to de-emphasize weak tensors.

The final distance metric is

Ds =
√

α1�v · �b1 + α2�v · �b2 (3)
where α1 and α2 are scaling factors, controlling both
the aspect ratio and the overall size of each cluster.
The vectors �b1 and �b2 correspond either to the local
image orientation, if a strong local orientation exists,
or a default direction. The decision is made by
comparing C to a threshold Tcoh as follows:

�b1 =
{

�e1, C > Tcoh
�d1, C � Tcoh

, �b2 =
{

�e2, C > Tcoh
�d2, C � Tcoh

(4)
The vectors d1 and d2 comprise a default orthonormal
basis. In our examples we set Tcoh to 0.5 and d1 to
the y-axis.

The scaling factors α1 and α2 are selected
individually for each super-pixel guided by a random

process, such that
α1 = φa1φs, α2 = φa2φs (5)

Through experimentation, we chose to compress the
aspect ratio perpendicular to edges by φa1 = 3. The
other terms are determined by two uniform random
numbers r1, r2 ∈ [0, 1]. We then set φa2 = (φa1 −
1)r2

1 + 1 and set the scale term φs = r2
2 + 1.

The local distance metric Ds is used in the SLIC
process to oversegment the image. We refer to
the resulting oversegmented image as P , and each
segment, Pi ∈ P , is a pebble.

3.2 Boundary smoothing
The pebbles constructed in Section 3.1 contain many
irregularities that depart from the smooth pebble
shapes that we wish to create. Hence, we apply a
low-pass filter in the frequency domain [25] to each
pebble’s outer contour co(k), for k = 0, 1, · · · , K −
1. This process effectively reconstructs a contour
from L Fourier coefficients, where L < K. In Fig. 5,
we illustrate a contour reconstructed with various
values of L. Note that at this stage we can obtain
a resolution-independent, tiled image P by applying
a scale factor to the Fourier coefficients, obtaining a
larger (or smaller) co as needed. As seen in Fig. 6,
one advantage of rendering at a higher resolution is
the increased surface area that can be used for adding
texture and lighting. Finally, each pebble Pi ∈ P is
updated by flood filling its corresponding co.

Fig. 5 Left to right: original contour, and reconstructed contours
using L = 37, 17, and 7 Fourier coefficients.

Fig. 6 High-resolution pebbles rendered at 5 times the input
resolution. Left: pebble shapes. Right: 3D rendered pebbles.

Automated pebble mosaic stylization of images 37

3.3 Pebble geometry
We construct a height field for each pebble by means
of harmonic interpolation over the domain, Ω, that
resides between two contours (Fig. 7(left)). The outer
contour, co, is described above. We obtain the inner
contour, ci, by thresholding the normalized distance
transform of Pi by Tdist ∈ (0, 1). We set a zero gradient
at the inner contour, thus creating a small flat face
to each pebble which then curves downwards to the
image plane. In all examples, we set Tdist = 0.85.

Our height field is the solution to the Laplace
equation [26]:

ΔPi = 0 over Ω (6)

with boundary value constraints Pi|co = 0 and Pi|ci =
1. Additionally, we set gradient constraints at the
boundaries such that |∇Pi| = 0 on ci. The gradient on
co is constructed as follows. Returning to the Fourier
transform of Section 3.2, we note that the derivative
co

′(k) of the sampled function co(k) can be computed
in the Fourier domain. This process provides us with
a sequence of vectors that are tangent to the curve,
one for each sample point. Rotating each vector
90◦ inwards gives us a gradient orientation that is
orthogonal to the boundary. The gradient magnitude
is chosen as follows:

|∇Pi| =
β

TdistDmax
(7)

where Dmax is the maximum value of the distance
transform. The parameter β determines the shape of
the resulting pebble; various settings are illustrated
in Fig. 8. We choose β = 2 to construct the pebble
profile curving downward into the surrounding area in
our examples. Notice that setting β too high results
in the gradient overshooting its target at the inner
contour resulting in a depression at the center as seen
in the bottom row of Fig. 8.

Fig. 7 Left: the domain, Ω, and boundaries (co and ci) of Pi. Right:
the gradient orientation on co (arrows) and zero-gradient on ci (dots).

β Height field Cross-section 3D plot

β = 1 0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

0
50

0.2

40

0.4

50

0.6

30 40

0.8

3020

1

20
10 10

0 0

β = 2 0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

0
50

0.2

40

0.4

50

0.6

30 40

0.8

3020

1

20
10 10

0 0

β = 3 0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

0
50

0.2

40

0.4

50

0.6

30 40

0.8

3020

1

20
10 10

0 0

Fig. 8 Constructing a height field at varying scales of gradient
magnitude on co.

3.4 Rendering
We apply Phong shading to the resulting height
field. We use the average colour in I under Pi as
the pebble’s surface color. Optionally, we can apply a
rock texture to the pebble as well. The texture image
is randomly sampled for each pebble and combined
with the luminosity channel using a multiply blend.
Example mosaics produced using this scheme, with
and without texture, are shown in Figs. 9(above) and
9(below) respectively.

Fig. 9 Above: result without texture. Below: textured result.

38 L. Doyle, F. Anderson, E. Choy, et al.

4 Results and discussion
We demonstrate our method on photographs
containing various subject matter in Fig. 10, using
2000 pebbles in each example. The original source
images are shown in Fig. 20. Rendering time for a 1.5
megapixel image is 28 s using our unoptimized CPU
implementation. The majority of this time (25 s) is
spent solving 2000 N2

i sparse linear systems in order
to construct the geometry of the pebbles. Increasing
the pebble count leads to solving smaller matrices
and thus faster execution time; for example, using
3000 pebbles reduces the solving time to 16 s.

Notice that even at this coarse scale, most of the
important image features are still recognizable. The
elongated pebble shapes add an impression of motion
to the results. This is most noticeable in the cat
image at the top left where the pebbles follow the
fur orientation. In the portrait image (second row,
left) we see how random pebble scaling can add visual
interest to otherwise flat image regions. This brings to
mind the activity of a mosaicist using tiny pebbles to
fill the empty spaces left between larger stones. In the
bottom row, adding texture supports the transition
from the synthetic 3D shapes in the top rows to a
more natural-looking material.

Fig. 10 Results. Top two rows: without texture. Bottom row: using marble texture.

Automated pebble mosaic stylization of images 39

Inspired by historical mosaics, such as the one
depicted in Fig. 1, we demonstrate our method on
the ornamental designs shown in Fig. 11. Due to the
high contrast in these images, the pebbles adhere
well to the image content, creating a striking re-
representation of the input.

4.1 Degrees of freedom
Our system has five notable degrees of freedom that
can influence the outcome of the final rendered mosaic:
color, shape, texture, orientation, and size. We briefly
discuss each here.

Color. Following the tradition in tile mosaics [7, 8,
11, 12] we render each pebble with the average color
under the corresponding image region. Alternatively,
we could allow color to vary over the pebble region,
guided by the input image.

Shape. Pebble shape can be influenced by the low-
pass filter used in the smoothing process discussed
in Section 3.2 and illustrated in Fig. 5. We chose to
retain seven Fourier coefficients, resulting in smooth
oval-like pebble shapes. However, less smoothing
would provide more shape variety.

Texture. We currently limit pebble texture to
a single sample but there is potential for more
development along this dimension. For example,
a database of texture swatches could be employed
to match pebble texture with the underlying image.
This addition would provide further connection with

Fig. 11 Results for ornamental motifs. Left: input images. Right:
results.

the input image and increase recognizability.
Orientation. Pebbles are oriented parallel to image

edges, as is common in both traditional and digital
mosaics [8, 11, 12]. As explained in Section 3.1, we
determine orientation through a structure tensor field,
defaulting to a fixed orientation where inadequate
information is present. We could also ask the user
to provide a vector field in place of a single default
direction.

Size. We discuss pebble size in the following
subsections, first talking about local variation in
pebble dimensions and then discussing size more
generally, including the option of varying pebble size
based on an importance map.
4.1.1 Pebble dimensions
In Section 3.1 and Eq. (5) we describe a random
process that determines the aspect ratio and relative
size of individual pebbles. We now show how varying
these parameters can influence the resulting mosaic;
the images in the top row of Fig. 12 provide a
visual example. In Fig. 12(top left) we fix φs = 1
to maintain a constant scale and vary the aspect
ratio using a random number. Here we increase
φa1 to 5 and calculate φa2 as before. The long
thin pebbles work well in this situation where we
connect them with the cat’s fur. Compare this
result to the cat in Fig. 10. There, setting φa1 to 3
shows less movement in the cat’s fur, but randomly
changing φs brings out more variation and liveliness.
In Fig. 12(top right), we fix the aspect ratio to
φa1 = φa2 = 1 and allow the scale parameter to vary.
We set φs = 5r2 + 1, where r is a uniform random
number in [0, 1]. Without orientation information it
is more difficult to identify the image. Also, such

Fig. 12 Top left: randomly varying pebble aspect ratio, fixed scale.
Top right: randomly varying pebble scale, fixed aspect ratio. Bottom:
rendering is nondeterministic due to random scale parameter.

40 L. Doyle, F. Anderson, E. Choy, et al.

extreme variability in pebble size is distracting since
the sizes are chosen randomly rather than based on
image content. In Fig. 12(bottom, left and right) we
demonstrate the impact of the random factors in the
scaling parameters: note the different outcomes for
two runs, using identical parameters.
4.1.2 Pebble size
In Fig. 13 we vary the number of pebbles that make
up a mosaic image. On the left we see a detailed
result using 3000 pebbles. Many traditional mosaics,
such as the one depicted in Fig. 1, were constructed
with this high level of detail. Next, we see a result
using 1000 pebbles. Even at this larger size, much
of the image remains clear owing to SLIC’s tendency
to adhere to image boundaries. Finally, the pebble
size on the right has probably been pushed too far,
making it difficult to recognize the main figure in the
result. See Fig. 15 for a rendering of this image using
2000 pebbles.

We can also vary the pebble size by use of an
importance map. The mask in the inset of Fig. 14
indicates regions to be rendered with smaller, more
numerous pebbles. This technique is useful for
drawing attention to important regions and provides

Fig. 13 Varying pebble size. Left to right: 3000, 1000, 500 pebbles.

Fig. 14 Pebbles within the important area (inset) are rendered at a
higher frequency.

a more detailed representation of the content.

4.2 Comparison with related work
Figure 15 shows a comparison between our method
and Hausner’s [8] using 2000 pebbles. Here, we turn
off the lighting effects and make the comparison based
on tile shape alone. (The color shift between the two
examples is due to using different source photographs
of the painting). By using heterogeneous shapes,
image content can be more accurately portrayed than
when using an equal number of 2D homogeneous
primitives. In our result, the pebble shapes cleanly
outline the contours of the figure and its drapery.
Where smaller pebbles are needed to fill an image
region, our method is not restricted to a uniform
pebble size. Both these properties stem from our
use of SLIC as the initial segmentation method. Of
course, both our method and Hausner’s can use
smaller primitives in regions specified by users.

Similarly, we compare our method with three
previous tile mosaic algorithms on a common image
in Fig. 16. Our result is on the bottom right
using 3000 pebbles. At the top left, Di Blasi and
Gallo [12] obtain clean lines and uniform spacing
by cutting tiles that overlap perceptual guidelines
and neighbouring tiles. The edges in our rendering
are obtained through SLIC which adhere well to
step edges but fail when perceptual boundaries are
not matched with a strong color discontinuity. An
example can be seen in the thin strand of feathers
above the brim of Lena’s hat where pebbles are not
constrained to this narrow region. This is a case in
which perceptual edge detection would benefit our
segmentation. Schlechtweg et al.’s [27] RenderBots
show fine detail by using 9000 primitives but the
placement is uneven and rendering took one hour to
complete.

Fig. 15 Comparison. Left: Hausner’s method. Right: ours. Both
results use 2000 tiles

Automated pebble mosaic stylization of images 41

Fig. 16 Comparison with previous tile mosaic algorithms.

Recently, there has been much attention given
to using convolutional neural networks for image
stylization [28, 29]. In Fig. 17(center) we show a
result obtained from deepart.io, a popular online
implementation of Gatys et al.’s method [28]. The
high-level semantic features used in neural style
transfer preserve image features better than the low-
level color features that we use; compare the detail
images in Figs. 17(bottom left) and 17(bottom right).
The iguana’s eye clearly highlights the advantage of
using semantic features: style transfer reproduced the
eye using a single pebble, improving recognizability.
Our method, in contrast, uses a number of pebbles
dependent on the SLIC super-pixel size; it artificially
breaks the eye into three pebbles. The advantage of
our method lies in explicitly modeling pebble shapes.
The texture produced by neural style transfer in
Fig. 17(center) only roughly approximates that found
in the style example in Fig. 17(top left). For example,
the definition of individual pebbles is completely
lost in parts of the background and the side of the
iguana’s head. In contrast, our method explicitly
models individual pebble geometry and can output
well-defined shapes at any resolution.

4.3 Limitations
Our method performs best on images with high
contrast and clear distinctions between regions of
differing semantic content. Due to the relatively
large scale of the pebbles, some subtle image features
or tiny details can be lost. Figure 18(top) shows
an image dominated by high-frequency content. In
our rendering in Fig. 18(right), only a large-scale

Fig. 17 Comparison with neural style. Top left: style example. Top
right: input image. Center: pebble mosaic rendered with neural style
[28] as implemented at deepart.io. Bottom left: detail. Bottom right:
detail of Fig. 9(bottom).

impression of the scene is captured. Reducing
pebble size is only a limited option since, past a
certain scale, the cement between the pebbles will
feature as prominently as the pebbles themselves.
In Fig. 18(bottom) the facial features are poorly
represented. SLIC does not effectively cope with
lighting changes in the area of the man’s nose,
for example. Either more sophisticated low-level
processing or learning-based semantic segmentations
could improve on our results, and both are promising
directions for future work.

Continuing our discussion on color, we also note
that our resulting images would be difficult to
recognize based on pebble layout only. See Fig. 19
for an example of a black and white pebble layout.
Without colorization, the orientation and pebble
boundaries only hint at the underlying image. More
work could be done to emphasize the structural
content of the image by varying pebble shape and
size, linking size and shape variation to image content
instead of varying pebble dimensions with random
factors. At the same time, it might be possible to

42 L. Doyle, F. Anderson, E. Choy, et al.

Fig. 18 Limitations of our method. Top: high-frequency features.
Bottom: semantic content.

Fig. 19 Pebble layout without colorization.

improve our pebble colors. Because we add lighting
effects to a base color derived from the image, the
final pebble color distribution is not necessarily very
close to the desired color. We could improve the
mosaic by better integration of the lighting process
and the selection of base color.

Processing time is also an issue. Our main
bottleneck is determining the numerous matrices
that construct the height field. Taking advantage
of parallelization would help. Also, solving at a lower
resolution and smoothing the results could improve
timing.

Fig. 20 Input images used in Figs. 9, 10, 13, 14, and 15.

Although we think that smooth river-worn pebbles
are the most commonly type used for pebble mosaics,
more varied rock types in principle could be used,
and this paper did not attempt to treat these.

5 Conclusions
In this paper we present a method to render 3D pebble
mosaics. Digital mosaics have been presented in the
NPR literature previously, but only in the context of
tiling a 2D surface; here, we not only create a tiling
representing pebbles, but also generate a height field
for the pebbles so that they can be rendered.

Our method starts by segmenting the image plane
with SLIC, equipped with a modified distance metric.
The resulting super-pixels adhere to image boundaries
and hence no further edge detection is required. By
varying the size, orientation, and aspect ratio of the
super-pixels, we obtain pebble shapes that are highly
expressive in their depiction of image content.

We construct the geometry of each pebble by
solving a Laplace equation on the domain between
two contours. The resulting height field can then be
rendered using a variety of lighting techniques beyond
the simple Phong shading model we use in this paper.
In addition, since we have synthesized 3D geometry,
our pebble mosaics can be used in novel applications,
from 3D virtual environments to physical 3D printed
objects.

In the future we would like to use semantic
segmentation to improve the initial super-pixel
clustering. Important image regions, especially
on the human face, could benefit by constraining
clustering to regions of similar content. Better use
of low-level image features could improve on the
SLIC segmentation. Pebble texture could also be
customized to suggest image details at a scale below
the size of individual pebbles. This addition would
bridge the gap between tile and multi-picture mosaics,
as defined by Battiato et al. [5], and strengthen the
connection between the original image and its mosaic
representation.

Acknowledgements

We would like to thank the anonymous reviewers for
many insightful comments. We also thank members of
the Graphics, Imaging and Games Lab for productive
comments and discussions. Funding for this work was

Automated pebble mosaic stylization of images 43

provided by NSERC, OGS, and Carleton University.
We used many images from Flickr under a Creative

Commons license. Thanks to the numerous photo-
graphers who provided material: Douglas Scortegagna
(landscape), bDom (b&w portrait), Julio Romero
(iguana), Peat Bakke (t-rex), Gábor Lengyel (portrait),
Tommie Hansen (canal), Theen Moy (cat), JB Banks
(dark woods), Richard Messenger (Yemeni), Greg
Myers (tomatoes), sicknotepix (toque).

References

[1] Dunbabin, K. M. D. Mosaics of the Greek and Roman
World. Cambridge University Press, 1999.

[2] Ling, R. Ancient Mosaics. British Museum Press, 1998.
[3] Howarth, M. The Complete Pebble Mosaic Handbook.

Firey Books, 2003.
[4] Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua,

P.; Süsstrunk, S. SLIC superpixels compared to state-
of-the-art superpixel methods. IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol. 34, No.
11, 2274–2282, 2012.

[5] Battiato, S.; di Blasi, G.; Farinella, G. M.; Gallo, G.
Digital mosaic frameworks—An overview. Computer
Graphics Forum Vol. 26, No. 4, 794–812, 2007.

[6] Silvers, R. Photomosaics. Henry Holt and Co., Inc.,
1997.

[7] Haeberli, P. Paint by numbers: Abstract image
representations. In: Proceedings of the 17th Annual
Conference on Computer Graphics and Interactive
Techniques, 207–214, 1990.

[8] Hausner, A. Simulating decorative mosaics. In:
Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, 573–
580, 2001.

[9] Secord, A. Weighted Voronoi stippling. In: Proceedings
of the 2nd International Symposium on Non-
Photorealistic Animation and Rendering, 37–43, 2002.

[10] Hiller, S.; Hellwig, H.; Deussen, O. Beyond stippling—
Methods for distributing objects on the plane.
Computer Graphics Forum Vol. 22, No. 3, 515–522,
2003.

[11] Elber, G.; Wolberg, G. Rendering traditional mosaics.
The Visual Computer Vol. 19, No. 1, 67–78, 2003.

[12] Di Blasi, G.; Gallo, G. Artificial mosaics. The Visual
Computer Vol. 21, No. 6, 373–383, 2005.

[13] Liu, Y.; Veksler, O.; Juan, O. Generating classic
mosaics with graph cuts. Computer Graphics Forum
Vol. 29, No. 8, 2387–2399, 2010.

[14] Kim, J.; Pellacini, F. Jigsaw image mosaics. ACM
Transactions on Graphics Vol. 21, No. 3, 657–664, 2002.

[15] Saputra, R. A.; Kaplan, C. S.; Asente, P.; Měch, R.
FLOWPAK: Flow-based ornamental element packing.
In: Proceedings of Graphics Interface Conference, 8–15,
2017.

[16] Saputra, R. A.; Kaplan, C. S.; Asente, P.
RepulsionPak: Deformation-driven element packing
with repulsion forces. In: Proceedings of Graphics
Interface Conference, 10–17, 2018.

[17] Kwan, K. C.; Sinn, L. T.; Han, C.; Wong, T. T.; Fu,
C. W. Pyramid of arclength descriptor for generating
collage of shapes. ACM Transactions on Graphics Vol.
35, No. 6, Article No. 229, 2016.

[18] Smith, K.; Liu, Y.; Klein, A. Animosaics. In:
Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 201–208, 2005.

[19] Dalal, K.; Klein, A. W.; Liu, Y.; Smith, K. A spectral
approach to NPR packing. In: Proceedings of the
4th International Symposium on Non-Photorealistic
Animation and Rendering, 71–78, 2006.

[20] Kaplan, C. S.; Salesin, D. H. Escherization. In:
Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques, 499–
510, 2000.

[21] Kaplan, C. S.; Salesin, D. H. Dihedral escherization. In:
Proceedings of the Conference on Graphics Interface,
255–262, 2004.

[22] Goferman, S.; Tal, A.; Zelnik-Manor, L. Puzzle-like
collage. Computer Graphics Forum Vol. 29, No. 2, 459–
468, 2010.

[23] Liu, L. J.; Zhang, H. J.; Jing, G. M.; Guo, Y. W.;
Chen, Z. G.; Wang, W. P. Correlation-preserving
photo collage. IEEE Transactions on Visualization and
Computer Graphics Vol. 24, No. 6, 1956–1968, 2018.

[24] Brox, T.; van den Boomgaard, R.; Lauze, F.; van
de Weijer, J.; Weickert, J.; Mrázek, P.; Kornprobst,
P. Adaptive structure tensors and their applications.
In: Visualization and Processing of Tensor Fields.
Mathematics and Visualization. Weickert, J.; Hagen, H.
Eds. Springer Berlin Heidelberg, 17–47, 2006.

[25] Gonzalez, R. C.; Woods, R. E. Digital Image Processing,
3rd edn. Prentice Hall, 2008.

[26] Pérez, P.; Gangnet, M.; Blake, A. Poisson image editing.
ACM Transactions on Graphics Vol. 22, No. 3, 313–318,
2003.

[27] Schlechtweg, S.; Germer, T.; Strothotte, T.
RenderBots—Multi-agent systems for direct image
generation. Computer Graphics Forum Vol. 24, No.
2, 137–148, 2005

[28] Gatys, L. A.; Ecker, A. S.; Bethge, M. Image
style transfer using convolutional neural networks. In:
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2414–2423, 2016.

44 L. Doyle, F. Anderson, E. Choy, et al.

[29] Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses
for real-time style transfer and super-resolution.
In: Computer Vision–ECCV 2016. Lecture Notes in
Computer Science, Vol. 9906. Leibe, B.; Matas, J.;
Sebe, N.; Welling, M. Eds. Springer Cham, 694–711,
2016.

Lars Doyle is a Ph.D. student in
the School of Computer Science at
Carleton University where he works in
the Graphics, Imaging, and Games Lab.
His research interests focus on image
processing, image stylization, and super-
resolution. He received his master and
bachelor degrees in computer science

from Carleton University. Previously, he worked as a graphic
designer.

Forest Anderson is a fourth-year
undergraduate student at Carleton
University, majoring in computer science.
He is interested in image processing,
game development, and computer
security.

Ehren Choy is a software developer
at Ultra Electronics. He received his
bachelor degree of software engineering
from the University of Waterloo, and his
master degree of computer science from
Carleton University.

David Mould received his Ph.D.
degree in computer graphics from the
University of Toronto in 2002. Prior
to this, he earned his B.Sc. degree
in combined physics and computer
science from the University of British
Columbia. He was a faculty member at
the University of Saskatchewan for six

years, and is presently a professor at Carleton University,
where he co-directs the Graphics, Imaging, and Games Lab
in the School of Computer Science. Dr. Mould’s research
interests include game design, non-photorealistic rendering,
and procedural natural phenomena.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article
are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

