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Abstract

We introduce a co-analysis method which learns a functionality
model for an object category, e.g., strollers or backpacks. Like
previous works on functionality, we analyze object-to-object inter-
actions and intra-object properties and relations. Differently from
previous works, our model goes beyond providing a functionality-
oriented descriptor for a single object; it prototypes the functional-
ity of a category of 3D objects by co-analyzing typical interactions
involving objects from the category. Furthermore, our co-analysis
localizes the studied properties to the specific locations, or surface
patches, that support specific functionalities, and then integrates the
patch-level properties into a category functionality model. Thus our
model focuses on the how, via common interactions, and where, via
patch localization, of functionality analysis.

Given a collection of 3D objects belonging to the same category,
with each object provided within a scene context, our co-analysis
yields a set of proto-patches, each of which is a patch prototype
supporting a specific type of interaction, e.g., stroller handle held
by hand. The learned category functionality model is composed of
proto-patches, along with their pairwise relations, which together
summarize the functional properties of all the patches that appear
in the input object category. With the learned functionality mod-
els for various object categories serving as a knowledge base, we
are able to form a functional understanding of an individual 3D ob-
ject, without a scene context. With patch localization in the model,
functionality-aware modeling, e.g, functional object enhancement
and the creation of functional object hybrids, is made possible.

Keywords: Shape analysis, co-analysis, functionality analysis,
object-to-object interaction, geometric modeling

Concepts: •Computing methodologies → Shape analysis;

1 Introduction

Most man-made objects are designed to serve certain functions.
How an object functions can be reflected by how its parts support
various usage scenarios either individually or collaboratively, with
different object parts often designed to perform different functions.
Understanding the functionalities of 3D objects is of great impor-
tance in shape analysis and geometric modeling. It has been stipu-
lated that the essential categorization of objects or scenes is by func-
tionality [Stark and Bowyer 1991; Greene et al. 2016]. As well, the
most basic requirement for creating or customizing a 3D product is
that the object must serve its intended functional purpose.
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Figure 1: We learn how a category of 3D objects function. This
may lead us to discover that the geometry of a chair could allow it
to function as a desk or handcart (top). One could produce func-
tional hybrids (bottom), where different functionalities discovered
from two objects are integrated into a multi-functional product.

In this paper, we are interested in learning a functionality model for
an object category, e.g., strollers or backpacks, where the model
describes functionality-related properties of 3D objects belonging
to that category. Functionality analysis is challenging since how
an object or a part therein functions can manifest itself in diverse
forms; there is unlikely a generic model of functionality. Simi-
lar to previous works on functionality [Kim et al. 2014; Hu et al.
2015], we focus on functionalities of man-made objects that are in-
ferable from their geometric properties, and our analysis is based
on static object-to-object interactions. However, differently from
these works, our functionality model goes beyond providing a
functionality-oriented descriptor for a single object; it prototypes
the functionality of a category of 3D objects by co-analyzing typ-
ical interactions involving objects from the category. Furthermore,
our co-analysis localizes the studied properties to the specific loca-
tions, or surface patches, that support specific functionalities, and
then integrates the patch-level properties into a category functional-
ity model. Thus, our model focuses on the how, via common inter-
actions, and where, via patch localization, of functionality analysis.

Analyzing and manipulating part structures of shapes is the main
subject of structure-aware processing [Mitra et al. 2013]. How-
ever, the design of an object’s parts and their relations reflects func-
tional, aesthetical, and other considerations. Instead of extracting
all part properties and relations which are common in a shape col-
lection [Fish et al. 2014], our model recognizes which of the prop-
erties, relations, and their combinations are related to functional-
ity and how the functions are performed. To this end, we learn
our functionality model by analyzing object-to-object interactions,
intra-object geometric properties and part relations, as well as the
empty spaces around objects which influence their functionality.

The input to our learning scheme is a collection of shapes belonging
to the same object category, where each shape is provided within a
scene context. To represent the functionalities of an object in our
model, we capture a set of patch-level unary and binary functional
properties. These functional properties of patches describe the in-
teractions that can take place between a central object and other
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Figure 2: Overview of the construction and use of our functionality model. (a) Given a set of objects of the same category, where each object
is given in the context of a scene, we detect functional patches that support different types of interactions between objects. Example patches
are shown as a rainbow color map on the surface of the shape, where values closer to red indicate that a point belongs to the patch with
higher probability. (b) We then learn a model that discovers the functionality of the class, describing functionality in terms of proto-patches
that summarize the patches in the collection with their properties. (c) Given an unknown object in isolation, we use the model to predict how
well the object supports the functionality of the category. This is done by estimating the location of functional patches on the object.

objects, where the full set of interactions characterizes the single or
multiple functionalities of the central object.

By means of a co-analysis, we extract the patch properties that are
relevant for the functionality of the category. Specifically, the co-
analysis yields a set of proto-patches, each of which is a patch pro-
totype supporting a specific type of interaction, e.g., stroller han-
dles held by hands. In general, we define a functionality model
as a set of proto-patches along with pairwise relations between the
proto-patches. Our goal is to learn a category functionality model,
or simply, a category functionality, which is composed of proto-
patches that summarize the functional properties of all the patches
that appear in the training data for the given object category. That
said, the localized, patch-level analysis does allow us to define func-
tionality models at varying granularity levels of the objects.

With the learned functionality models for various object categories
serving as a knowledge base, we are able to form a functional under-
standing of an individual 3D object without a scene context. With
our patch-based, rather than part-based, analysis, the object does
not need to possess any semantic information such as a segmen-
tation. Such an understanding allows us to recognize or discrimi-
nate objects from a functionality perspective, to assess functional
similarities, and to possibly discover multiple functionalities of the
same object; see top row of Figure 1. Furthermore, since our func-
tionality model is localized to the level of patches and current 3D
modeling tools operate predominantly at the part-level of objects,
functionality-aware modeling of 3D objects is possible. For exam-
ple, we could create functional object hybrids by integrating two
different functions from two objects and merging them in a way so
that the hybrid supports both functions; see bottom of Figure 1.

2 Related work

Structure and functionality. Shape structure is about the ar-
rangement and relations between shape parts, e.g., symmetry,
proximity, and orthogonality. In retrospect, many past works on
structure-aware analysis [Mitra et al. 2013] are connected to func-
tional analysis, but typically, the connections are either insufficient
or indirect for acquiring a functional understanding of shapes. For
example, symmetry is relevant to functionality since symmetric
parts tend to perform the same functions. However, merely detect-
ing symmetric parts does not reveal what functionalities the parts
perform. In addition, not all structural relations are functional. For
example, the orthogonality between the seat and back of a chair
is an aesthetic property. Thus, although structural relations are

useful for the analysis of functionality, a functional understanding
of an object or category requires a deeper analysis with additional
knowledge acquisition. For example, a single functionality requires
a combination of part-to-part relations to be satisfied.

Moreover, structural considerations have also been applied to ana-
lyze the arrangements of objects in a scene, benefiting applications
such as scene synthesis [Fisher et al. 2012], and scene compari-
son [Xu et al. 2014]. In our work, we learn a functionality model via
co-analysis of a set of shapes by extracting both intra-shape patch
relations and interactions between shapes. We learn combinations
of the detected relations that enable specific shape functions.

Meta representation. Recent works generalize shape structures
by learning statistics of part relations [Fish et al. 2014] or sur-
faces [Yumer et al. 2015] via co-analyses. In particular, the meta
representation of Fish et al. [2014] provides a prototype of the com-
mon structures for a category of 3D objects. The key difference
to our work is that meta representations only consider intra-object
relations, not all of which are functionality-related; they do not ac-
count for object-to-object interactions which are critical to func-
tional analysis. Moreover, both the training and testing data for
inferring meta representations come with semantic segmentations,
which in some sense, already assume a functional understanding
of the object category. Our work analyzes objects at the point and
patch level; the objects do not need to be segmented.

Discriminative functionality models. Some past works have fo-
cused on the task of categorizing an object based on its function, re-
quiring a method or model to discriminate between different types
of functionality. In the earlier work of Stark and Boyer [1996], a
model is handcrafted for a given object category to recognize the
functional requirements that objects in the category must satisfy,
e.g., the containment of a liquid or stability of a chair. Another class
of methods for recognizing functionality is agent-based, where the
functionalities are identified based on interactions of an agent with
the object [Bar-Aviv and Rivlin 2006; Grabner et al. 2011; Kim
et al. 2014; Savva et al. 2014]. Laga et al. [2013] learn an asso-
ciation between geometric properties and intra-shape part relations
of a shape and its functionality, also via a co-analysis. Like meta
representations, their work does not consider object-to-object inter-
actions and falls in line with structural co-analysis.

Our functionality model is learned generically, accounting for both
object-to-object and human-to-object interactions. The model is
not only discriminative, but also supports functionality-aware mod-
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Figure 3: Our functionality model can be envisioned as the compo-
sition of: (a) A collection of functional patches and their unary and
binary properties, and (b) a set of weights defining the importance
of each property for representing the functionality of the category.

eling. It is a model of the functionality of shapes, rather than just a
model of the interacting agents or a set of classification rules.

Shape2Pose and SceneGrok. Inspired by works from vision
on object affordances, e.g., [Bar-Aviv and Rivlin 2006; Grabner
et al. 2011; Jiang et al. 2013; Zhu et al. 2014], recent works in
graphics have developed 3D affordance models. Most notably, in
Shape2Pose, Kim et al. [2014] analyze the functionality of a 3D ob-
ject by fitting a suitable human pose to it. Later, SceneGrok [Savva
et al. 2014] extends this to scene understanding. The fitting in
Shape2Pose is supported by training data composed of human-
object pairs for various object categories. A key difference to our
work is that the two methods have different goals: Shape2pose aims
at predicting a human pose for a given object, while we aim to pre-
dict how the object functions based on a richer variety of interac-
tions, including those between a human and an object, learned from
different categories.

On a more conceptual level, how an object functions is not always
well reflected by interactions with human poses. For example, con-
sider a drying rack with hanging laundry; there is no human interac-
tion involved. Even if looking only at human poses, one may have
a hard time discriminating between certain objects, e.g., a hook and
a vase, since a human may hold these objects with a similar pose.
Last but not the least, even if an object is designed to be directly
used by humans, human poses alone cannot always distinguish its
functionality from others. For example, a human can carry a back-
pack while sitting, standing or walking. The specific pose of the
human does not allow us to infer the functionality of the backpack.

Interaction context (ICON). Our functional co-analysis builds
on the recent work of Hu et al. [2015] on ICON, where the represen-
tation and organization of interactions is similar. The key difference
is that ICON explicitly describes the functionality of a single object,
given in a scene context, while we learn the functionality of an ob-
ject category. Furthermore, the ICON descriptor is only applicable
to describe the functionality of scenes, not shapes in isolation.

3 Overview

In this section, we provide an overview of our functionality model,
the learning scheme, and relevant applications; see Figure 2.

Functionality model (Section 4). Since we target a localized
analysis of functionality, we need to learn what areas of a shape
prevent or contribute to a specific functionality. Thus, we choose to
represent functional properties at the level of patches defined on the
surface of shapes. Patches are more general than parts since, for ex-
ample, the top and bottom of a part may support different functional
properties. Thus, different regions of a part can be represented with
separate patches. Moreover, we seek to create a model that rep-
resents the functionalities of man-made objects that are inferable
from their geometric properties. Thus, the functional properties
that the patches encode are inferred from object-to-object interac-
tions present in the geometric arrangements of objects. Note that
our work focuses on static interactions such as a human holding a
handle or an object resting on top of another. Our model does not
capture dynamic interactions such as a rotating wheel, nor detects
functionality unrelated to geometry, e.g., the screen of a TV.

The model itself consists of a set of abstract patches that we call
proto-patches, as they represent a patch prototype. The proto-
patches correspond to the different types of interactions that con-
tribute to a specific functionality. They are represented with prop-
erties that encode the geometry of the interactions supported by
each patch. The patch properties also include a description of the
empty space surrounding the objects that is relevant to function-
ality, and intra-object geometric properties that capture the global
arrangement of patches. The combination of all these properties
into a model provides a localized explanation of the geometric and
structural features of shape patches that are needed to support the
functionality of a shape. The model, which is a collection of proto-
patches, then encodes the functionality of a category of shapes.

Learning (Section 5). We learn the functionality model via co-
analysis of shapes that belong to the same object category. This
process discovers the functionality of shapes in a category, and cre-
ates the proto-patches. Each input shape, which we call a central
object, is provided within a scene context from where we derive
the interactions between the central and other objects. Thus, for
each scene, the central object is known a priori. We first analyze
the interactions in each scene independently and represent them
with features derived from geometric entities such as the interac-
tion bisector surfaces and the interaction regions. Although the in-
put shapes belonging to the same category can vary considerably in
their geometry, this choice of features encodes the interactions in a
manner that is less sensitive to the specific geometry of the shapes.
Next, we perform a co-analysis by deriving the functional patches
for each shape from the interaction regions and establishing a cor-
respondence between patches that support the same interactions.
Finally, we aggregate the properties of all corresponding patches to
create the proto-patches.

Prediction and scoring (Section 6). The basic use of our func-
tionality model is to predict whether an unknown shape supports
the functionality of a category. However, unknown shapes often
appear in isolation, not interacting with other objects in the con-
text of a scene. Thus, we need to define patches on the unknown
shape that correspond to the proto-patches in the model, and simul-
taneously verify if their properties support the functionality of the
model. We perform this using an optimization that simultaneously
finds the patches and computes a score of how well the shape and its
patches support the model functionality. We call this process func-
tionality scoring. This optimization serves as a building block to
enable several applications. For example, to support functionality-
aware enhancement of 3D shapes, the optimization can be used to
detect the patches that need to be modified so that the shape better
supports a functionality.
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Figure 4: Learning the functionality model: (a) Given objects in
the context of a scene, we compute an ICON hierarchy for each
central object (in orange). Only two objects of a larger set are
shown. (b) We establish a correspondence between all the hier-
archies through a co-analysis, shown with the matching of col-
ors between the hierarchies and the scenes. (c) We collect sets of
corresponding functional patches and summarize them with proto-
patches. The model is composed of functional properties of the
proto-patches and binary properties defined between proto-patches.

4 Functionality model

Our model can be described as a collection of functional patches
originating from the objects in a specific category, as shown in Fig-
ure 3. Each object contributes one or more patches to the model,
which are clustered together as proto-patches. The model also con-
tains unary properties of the patches, binary properties between
patches, and a global set of feature weights that indicate the rel-
evance of each property in describing the category functionality.

More formally, a proto-patch Pi = {Ui, Si} represents a patch pro-
totype that supports a specific type of interaction, and encodes it as
distributions of unary properties Ui of the patch, and the functional
space Si surrounding the patch. Our functionality model is denoted
as M = {P,B,Ω}, where P = {Pi} is a set of proto-patches,
B = {Bi,j} are distributions of binary properties defined between
pairs of proto-patches, and Ω is a set of weights indicating the rele-
vance of unary and binary properties in describing the functionality.

We define a set of abstract unary properties U = {uk}, such as the
normal direction of a patch, and a set of abstract binary properties
B = {bk}, such as the relative orientation of two different patches.
We learn the distribution of values for these unary and binary prop-
erties for each object in the category. For the i-th proto-patch, ui,k

encodes the distribution of the k-th unary property, and for each
pair i, j of proto-patches, bi,j,k encodes the distribution of the k-th
binary property. The list of unary and binary properties are summa-
rized in Appendix A. Using these properties, the set Ui = {ui,k}
captures the geometric properties of proto-patch i in terms of the
abstract properties U , and similarly the set Bi,j = {bi,j,k} cap-
tures the general arrangement of pairs of proto-patches i and j in
terms of the properties in B. Since the functional space is more geo-
metric in nature, Si is represented as a closed surface. We describe
how the distributions and the functional space are derived from the
training data in Section 5.

The distributions ui,k and bi,j,k can be used to verify how well the
property values of an unknown shape agree with the values of the
training shapes. Thus, assuming that we have a reasonable set of
functional properties, the analysis of likelihood derived from the
individual distributions can be aggregated to infer a score of the
functionality of a shape, which is described in Section 6.

Our model stores one proto-patch for each type of interaction that
objects can support. The functionality of a category is then de-
scribed by the collection of all proto-patches and their properties.
Although the focus of our work is to describe such a category func-

Figure 5: Examples of functional patches derived from different
scenes. Each color map shows the patches corresponding to one of
the first-level nodes in the ICON hierarchy of the scene. Note how
each node corresponds to patches of the same type of interactions.

tionality, the localized analysis of functionality based on the proto-
patches allows us to define functionality at various granularity lev-
els. For example, as shown in Figure 2, the functionality of the
handcart category is captured by three proto-patches. A finer group-
ing of the proto-patches could lead to two functionalities: the patch
in the box body of the handcart enables “storage”, while the patches
on the shafts and wheels provide “locomotion”.

5 Learning the functionality model

Given a set of shapes, we initially describe each scene in the in-
put with an interaction context (ICON) descriptor [Hu et al. 2015].
We briefly describe this descriptor here for completeness, and then
explain how it is used in our co-analysis and model construction,
which are illustrated in Figure 4.

Interaction context. ICON encodes the pairwise interactions be-
tween the central object and the remaining objects in a scene. To
compute an ICON descriptor, each shape is approximated with a
set of sample points. Thus, our method can be applied to scenes
with shapes that are not necessarily watertight manifolds. Each in-
teraction is described by features of an interaction bisector surface
(IBS) [Zhao et al. 2014] and an interaction region (IR). The IBS is
defined as a subset of the Voronoi diagram computed between two
objects and represents the spatial region between them. The IR is
the region on the surface of the central object that corresponds to
the interaction captured by the IBS. The features computed for the
IBS and IR capture the geometric properties that describe the inter-
action between two objects, but in a manner that is less sensitive to
the specific geometry of the objects.

All the interactions of a central object are organized in a hierarchy
of interactions, called the ICON descriptor. The leaf nodes of the hi-
erarchy represent single interactions, while the intermediate nodes
group similar types of interactions together; see Figure 4(b). Each
ICON descriptor may have multiple associated hierarchies. Thus,
to represent the central object, we select the hierarchy that mini-
mizes the average distance to the hierarchies of all the other central
objects in the training set for the given category. The tree distance
is derived from the quality of a subtree isomorphism, which is com-
puted between two hierarchies based on the IBS and IR descriptors,
similarly as described in the work of Hu et al. [2015].

Co-analysis. The goal of our co-analysis is to cluster together
similar interactions that appear in different scenes. Given the



ICONs of all the central objects in the input category, we first es-
tablish a correspondence between all the pairs of ICON hierarchies.
The correspondence for a pair is derived from the same subtree iso-
morphism used to compute a tree distance. This correspondence is
illustrated in Figure 4(b).

Since we aim for a coherent correspondence between all the inter-
actions in the category, we apply an additional refinement step to
ensure coherency. We construct a graph where each vertex corre-
sponds to a central object in the set, and every two objects are con-
nected by an edge whose weight is the distance between their ICON
hierarchies. We compute a minimum spanning tree of this graph,
and use it to propagate the correspondences across the set. We start
with a randomly selected root vertex and establish correspondences
between the root and all its children (the vertices connected to the
root). Next, we recursively propagate the correspondence to the
children in a breadth first manner. In each step, we reuse the cor-
respondence already found with the tree isomorphism. This propa-
gation ensures that cycles of inconsistent correspondences between
different ICON hierarchies in the original graph are eliminated. The
output of this step is a correspondence between the nodes of all the
selected ICON hierarchies of the objects.

Patch definition. We define the functional patches based on the
interaction regions of each node on the first level of each ICON
hierarchy. Due to the grouping of interactions in ICON descrip-
tors, the first-level nodes correspond to the most fundamental types
of interactions, as illustrated in Figure 5. Since a node potentially
has multiple children corresponding to several interactions and IRs,
we take the union of all the interacting objects corresponding to all
the children of the node. Hence, we compute the IR for the inter-
action between the central object and this union of objects. The
IRs computed with ICON are not a binary assignment of points on
the surface of the object, but rather a weight assignment for all the
object’s points, where this weight indicates the importance of the
point to the specific IR. When computing the functional properties
of the patches, we take these weights into consideration. A func-
tional patch is then described by the point weighting and properties
of the corresponding IR.

After defining the functional patches, we can extract their prop-
erties. The unary properties are related to the interactions of the
patches, while the binary properties are pairwise geometric rela-
tions between patches. All of the properties that we use are sum-
marized in Appendix A. Note that each sample point on the shape
has a set of point-level properties, and each pair of samples has a
set of pairwise properties. Then, the patch-level unary properties
are computed as histograms of the point-level properties of all the
samples in the patch, where we multiply the weight of a point by its
point-level property before using the value to create the histogram.
The binary patch-level properties are computed as histograms of the
pairwise properties of all the points between a pair of patches.

In addition, we extract the functional space that surrounds each
patch. To obtain this space for a patch, we first define the active
scene of the central object as composed of the object itself and all
the interacting objects corresponding to the interaction of the IR of
the patch. Then, we first bound the active scene using a sphere.
Next, we take the union between the sphere and the central object.
Finally, we compute the IBS between this union and all the other in-
teracting objects in the active scene. We use a sphere with diameter
1.2×the diagonal of the active scene’s axis-aligned bounding box,
to avoid splitting the functional space into multiple parts. An ex-
ample of computing the functional space for the patch correspond-
ing to the interaction between a chair and a human is illustrated
in Figure 6. In this case, we consider the chair and the human in
the computation, but not the ground. The resulting IBS bounds the
functional space of the patch.
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Figure 6: Computation of the functional space of a chair.

Model definition. A single proto-patch is defined by a set of
patches in correspondence. The distributions ui,k and bi,j,k of the
functionality model capture the distribution of the unary and binary
properties of proto-patches in the model, respectively. There are
different options for representing these distributions. In our case,
since the number of training instances is relatively small compared
to the dimensionality of the properties, we have opted to represent
the distributions simply as sets of training samples. The probability
of a new property value is derived from the distance to the near-
est neighbor sample in the set. This allows us to obtain more pre-
cise estimates in the case of a small training set. If larger training
sets were available, the nearest neighbor estimate could be com-
puted with efficient spatial queries, or replaced by more scalable
approaches such as regression or density-based approaches.

The functional spaces of all patches in a proto-patch are geomet-
ric entities represented as closed surfaces. To derive the functional
space Si of proto-patch i, we take all the corresponding patches and
align them together based on principal component analysis. A patch
alignment then implies an alignment for the functional spaces, i.e.,
the spaces are rigidly moved according to the transformation ap-
plied to the patches. Finally, we define the functional space of the
proto-patch as the intersection of all these aligned spaces.

Learning property weights. Given a set of property weights, we
can predict the functional patches and compute the functionality
score (defined later in Section 6) for any given shape. However,
since different unary and binary properties may be useful for captur-
ing different functionalities, we learn a set of property weights ΩM

for the model M of each category. To learn the weights for a model
M, we define a metric learning problem: we use our functionality
score to rank all the objects in our training set against M, where the
training set includes objects from other categories as well. The ob-
jective of the learning is then that objects from the model’s category
should be ranked before objects from other categories. Specifically,
let n1 and n2 be the number of shapes in the training set that are
inside and outside the category of functionality model M, respec-
tively. We have n1n2 pairwise constraints specifying that the score
of a shape inside the category of M should be smaller than the
score of a shape outside. We use these constraints to pose and solve
a metric learning problem [Schultz and Joachims 2004].

A challenge is that the score employed to learn the weights is itself
a function of the feature weights ΩM. As defined in Section 6, the
score is formulated in terms of distances between predicted patches
and proto-patches of M. Due to this reason, we learn the weights
in an iterative scheme. In more detail, after obtaining the initial
predicted patches for each shape (which does not require weights),
we learn the optimal weights by solving the metric learning de-
scribed above, and then refine the predicted patches with the learned
weights by solving a constrained optimization problem. We then



Figure 7: Prediction of functionality with our model. Given the un-
known shape to the left, we locate patches that correspond to proto-
patches by finding the most appropriate nearest neighbor patch in
the model. We only illustrate the case of unary features here.

repeat the process with the refined patches until either the function-
ality score or the weights converge. The details of initial prediction
and patch refinement can be found in Section 6. Once we learned
the optimal property weights for a model M, they are fixed and
used for functionality prediction on any input shape.

6 Functionality prediction

Given a functionality model and an unknown object, we can predict
whether the object supports the functionality of the model. More
precisely, we can estimate the degree to which the object supports
this functionality. To use our model for such a task, we first need to
locate patches on the object that correspond to the proto-patches of
the model. However, since the object is given in isolation without a
scene context from where we could extract the patches, our strategy
is to search for the patches that give the best functionality estima-
tion according to the model. Thus, we formulate the problem as an
optimization that simultaneously defines the patches and computes
their functionality score.

For practical reasons, we will define a functionality distance D in-
stead of a functionality score. The distance measures how far an
object is from satisfying the functionality of a given category model
M, and its values are between 0 and 1. The functionality score of
a shape can then be simply defined as F = 1−D.

Single functionality patch. Let us first look at the case of lo-
cating a single patch πi on the unknown object, so that the patch
corresponds to a specific proto-patch Pi of the model. We need
to define the spatial extent of πi on the object and estimate how
well the property values of πi agree with the distributions of Pi.
We solve these two tasks with an iterative approach, alternating be-
tween the computation of the functionality distance from πi to Pi,
and the refinement of the extent of πi based on a gradient descent.

We represent an object as a set of n surface sample points. The
shape and spatial extent of a patch πi is encoded as a column vector
Wi of dimension n. Each entry 0 ≤ Wp,i ≤ 1 of this vector
indicates how strongly point p belongs to πi. Thus, in practice, the
patches are a probabilistic distribution of their location, rather than
discrete sets of points.

Let us assume for now that the spatial extent of a patch πi is al-
ready defined by Wi. To obtain a functionality distance of πi to
the proto-patch Pi, we compute the patch-level properties of πi and
compare them to the properties of Pi. As described in Section 5,
we use the nearest neighbor approach for this task. In detail, given
a specific abstract property uk, we compute the corresponding de-
scriptor for patch πi that is defined by Wi, and denoted Duk

(Wi).

Next, we find its nearest neighbor in distribution ui,k ∈ Pi, denoted
N (ui,k). The functionality distance for this property is given by

Duk
(Wi, ui,k) = ‖Duk

(Wi)−N (ui,k)‖
2
F , (1)

where ‖ · ‖F is the Frobenius norm of a vector. This process is
illustrated in Figure 7. In practice, we consider multiple nearest
neighbors for robustness, implying that the functionality distance is
a sum of distances to all nearest neighbors, i.e., we have a term like
the right-hand of Eq. 1 for each neighbor. However, to simplify the
notation of subsequent formulas, we omit this additional sum.

When considering multiple properties, we assume statistical inde-
pendence among the properties and formulate the functionality dis-
tance for patch Wi as the sum of all property distances:

Du(Wi, Pi) =
∑

uk

α
u
k ‖Duk

(Wi)−N (ui,k)‖
2
F , (2)

where αu
k is the weight learned for property uk in ΩM, as explained

in Section 5. Du(Wi, Pi) then measures how close the patch de-
fined by Wi is to supporting interactions like the ones supported by
proto-patch Pi.

Now, given the nearest neighbors for patch πi, we are able to refine
the location and extent of the patch defined by Wi by performing a
gradient descent of the distance function given by Eq. 2. This pro-
cess is repeated iteratively similar to an expectation-maximization
approach: starting with some initial guess for Wi, we locate its
nearest neighbors, compute the functionality distance, and then re-
fine Wi. The iterations stop when the change in the functionality
distance is smaller than a given threshold.

Next, we first explain how this formulation can be extended to in-
clude multiple patches as well as the binary properties of the model
M. Then, we describe how we obtain the initial guess for patches
and the refinement.

Multiple patches and binary properties. We represent multiple
patches on a shape by a matrix W of dimensions n×m, where m is
the number of proto-patches in the model M of the given category.
A column Wi of this matrix represents a single patch πi as defined
above. We formulate the distance measure that considers multiple
patches and binary properties between them as:

D(W,M) = Du(W,M) +Db(W,M), (3)

where Du and Db are distance measures that consider the distribu-
tions of unary and binary properties of M, respectively.

We use the functionality distance of a patch defined in Equation 2
to formulate a term that considers the unary properties of all the
proto-patches in the model:

Du(W,M) =
∑

i

∑

ui,k

α
u
k Duk

(Wi, ui,k)

=
∑

i

∑

ui,k

α
u
k ‖Duk

(Wi)−N (ui,k)‖
2
F .

(4)

The patch-level descriptors for patches are histograms of point-
level properties (Appendix A). Since we optimize the objective with
an iterative scheme that can change the patches πi in each iter-
ation, it would appear that we need to recompute the histograms
for each patch at every iteration. However, for each sample point
on the shape, the properties are immutable. Hence, we decouple
the point-level property values from the histogram bins by formu-
lating the patch-level descriptors as Duk

(Wi) = Bk Wi, where



Bk ∈ {0, 1}n
u
k×n is a constant logical matrix that indicates the

bin of each sample point for property uk. The dimension nu
k is

the number of bins for property uk, and n is the number of sample
points of the shape. Bk is computed once, based on the point-level
properties of each sample. This speeds up the optimization as we
do not need to update the matrices Bk at each iteration, and only
update the Wi’s, that represent each patch πi.

The unary distance measure thus can be written in matrix form as

Du(W,M) =
∑

uk

α
u
k ‖BkW −Nk‖

2
F , (5)

where Nk = [N (u1,k),N (u2,k), . . . ,N (um,k)].

Similarly, the binary distance measure can be written as

Db(W,M) =
∑

i,j

∑

bi,j,k

α
b
k Dbk (Wi,Wj , bi,j,k)

=
∑

i,j

∑

bi,j,k

α
b
k

nb
k

∑

l=1

(WT
i B

b
k,l Wj −N (bi,j,k)l)

2

=
∑

bk

nb
k

∑

l=1

α
b
k

∑

i,j

(WT
i B

b
k,l Wj −N (bi,j,k)l)

2

=
∑

bk

nb
k

∑

l=1

α
b
k‖W

T
B

b
k,l W −N

b
k,l‖

2
F ,

(6)
where αb

k is the weight learned for property bk in ΩM, Bb
k,l ∈

{0, 1}n×n is a logical matrix that indicates whether a pair of sam-

ples contributes to bin l of the binary descriptor k, nb
k is the number

of bins for property k, and Nb
k,l = [N (bi,j,k)l; ∀i, j] ∈ R

m×m,
where N (bi,j,k)l is the l-th bin of the histogram N (bi,j,k). Note

that both B
b
k,l and Nb

k,l are symmetric.

Optimization. To estimate the location of the patches and their

scores efficiently, we first compute an initial guess W (0) for the
functional patches using the point-level properties only. Then, we
find the nearest neighborhoods Nk and Nb

k,l, and optimize W to
minimize D(W,M) of Eq. 3.

Initial prediction. We use regression to predict the likelihood of
any point in a new shape to be part of each proto-patch. In a
pre-processing step, we train a random regression forest [Breiman
2001] (using 30 trees) on the point-level properties for each proto-
patch Pi. For any given new shape, after computing the properties
for the sample points, we can predict the likelihood of each point

with respect to each Pi. We set this as the initial W
(0)
i .

Refinement. Next, we find the nearest neighbors of the predicted
patches for every property in the proto-patch, and refine W by per-
forming a gradient descent to optimize Eq. 3. We set two constraints
on W to obtain a meaningful solution: W ≥ 0 and ‖Wi‖1 = 1.
We employ a limited-memory projected quasi-Newton algorithm
(PQN) [Schmidt et al. 2009] to solve this constrained optimization
problem since it is efficient for large-scale optimization with simple
constraints. To apply PQN, we need the gradient of the objective
function, which we derive in Appendix B. Although the gradient
can become negative, the optimization uses a projection onto a sim-
plex to ensure that the weights satisfy the constraints [Schmidt et al.
2009]. The optimization stops when the change in the objective
function is smaller than 0.001.

Output. The result of the optimization is a set of patches that are
located on the input shape and represented by W . Each patch Wi

Figure 8: Evaluation of functionality models learned, in terms of
the ranking consistency (RC). Note how the ranking of shapes is
well-preserved even when half the dataset is used for training and
half for testing, independently of the settings for the selection of
nearest neighbors (different curves).
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Figure 9: Functionality scores computed for objects in our dataset.
The score of a shape in a given row is predicted with the model of
the category written at the beginning of the row.

corresponds to proto-patch Pi in the model. Using these patches,
we obtain two types of functionality distance: (i) The global func-
tionality distance of the object, that estimates how well the object
supports the functionality of the model; and, (ii) The functionality
distance of each patch, which is of a local nature and quantifies how
well Wi supports the interactions that proto-patch Pi supports. This
gives an indication of how each portion of the object contributes to
the functionality of the whole shape.

7 Results and evaluation

We first evaluate the construction of the functionality model, and
then give examples of applications where the model can be used.

Datasets. We test our functionality model on 15 classes of ob-
jects, where each class has 10-50 central objects, with 608 ob-
jects and their scenes in total. The classes are: Backpack, Bas-
ket, Bicycle, Chair, Desk, Drying Rack, Handcart, Hanger, Hook,
Shelf, Stand, Stroller, Table, TV Bench, and Vase. The full datasets
are shown in the supplementary material. We selected classes that
cover a variety of interaction types (1-3 interactions for each cen-
tral object), and where the interactions of the shapes can be inferred
from their geometry. Our dataset contains shapes from the datasets
of Kim et al. [2014], Fisher et al. [2015], and Hu et al. [2015], with
additional shapes that we collected. We assume the input shapes
are consistently upright-oriented both for learning and prediction.



Figure 10: Effect of the training set size on the ranking consistency
(RC). The red line is the average for all classes, while the gray
lines are individual classes. Note how, with 20% of the shapes in
the dataset, we are already able to obtain a high-quality model.

Evaluation of the functionality model. We evaluate different
aspects of the model construction, starting with the accuracy of the
learned models. The goal of our optimization is to learn a distance
measure from a shape to a category. The learned measure should be
low when the functionality of a shape is close to that of the model’s
category, and high when the functionality is far from that of the
category. Thus, a natural way of evaluating the accuracy of the
model is verifying how well the distance measure satisfies this con-
sistency requirement. This requirement is equivalent to asking for
the preservation of a ranking of shapes ordered by their distance,
where the first shapes that appear in the ranking are of the same
class as the model. Thus, we evaluate the quality of the ranking in
a quantitative manner with the ranking consistency (RC):

RC(M) =
∑

si∈I

∑

sj∈O

C(D(si,M),D(sj ,M))
/

|I||O|, (7)

where

C(di, dj) =

{

1, if di < dj ,
0, otherwise,

(8)

with I being the set of test shapes in the same category as the
model, O the set of shapes outside the category, and D(si,M)
the functional distance of model M for shape si. The RC varies in
[0, 1] and measures how often each individual shape in the category
of the model is ranked before shapes that are not in the model’s
category, capturing the global consistency of the ranking.

We compute the RC with different levels of k-fold cross-validation,
that is, the dataset is divided into k sets of shapes, with k − 1 sets
being used for training a model and one set being used to evaluate
the RC. This allows us to evaluate the RC in more general settings
with different sizes of training and test sets. Note that, for each
category of shapes, we train a model using shapes from inside and
outside the class, as we also need negative examples to learn the
model’s weights. Thus, the folds used for training and testing con-
tain models from all the categories.

In Figure 8, we see a plot of the average RC for all classes in our
dataset. Note in the graph how, as the size of the training set in-
creases, the quality of the ranking also increases. The RC obtained
with k = 2 is already over 0.94, implying that high-quality mod-
els can be obtained with our optimization when using half of our
dataset as a training set, which is in the order of 300 shapes. Fig-
ure 9 shows a few qualitative examples of the functionality scores
obtained for different shapes inside and outside of a category. We
observe that shapes inside a given category, or with a similar func-
tionality, have high scores close to 1, while shapes outside the cat-
egory have lower scores around 0.7. Note that, since we always
optimize the patches to yield the highest functionality score, the
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Figure 11: Amount of correlation between different object cate-
gories according to the learned functionality models, where the col-
ormap ranges from red to yellow. Note how the categories with sim-
ilar functionality have the highest correlation (the outlined cells).

scores for unrelated shapes are not zero, but typically cluster around
0.7. Nevertheless, the relative ranking is preserved as the scores for
functionally-related shapes are close to 1.

Selection of nearest neighbors. We investigate different ways of
using nearest neighbors to access the training data, and study how
these choices affect the accuracy of the results. We investigate the
use of different numbers of neighbors, specifically, 1 and 5 nearest
neighbors, and the use of the neighbors in a coherent and incoher-
ent manner. In the formulation of the unary and binary terms of
our objective, given in Equations 5 and 6, we consult the nearest
neighbors for each property independently, which corresponds to
using the neighbors in an incoherent manner. In the coherent set-
ting, we incorporate an additional constraint in the optimization to
ensure that all the properties are consulted from the same selected
set of 1 or 5 neighbors, implying that we do not treat the properties
independently. We see in Figure 8 that these settings do not have a
significant influence on the results, but there is a clear trend where
multiple incoherent neighbors give the best results. We also see that
the optimization is insensitive to outliers, since the performance is
quite stable even when only one nearest neighbor is used.

Training set size. We also investigate in more detail how the size
of the training set affects the accuracy of the model, to establish
what number of objects is sufficient to learn a satisfactory model.
In detail, we analyze how the average RC of a model changes with
respect to the training set size, starting with much smaller training
sets than in the previous experiment. We explore the use of only
10% to 50% of the shapes in our dataset for training. We compute
the RC on a separate test set composed of 10% of the dataset. The
result of this experiment as an average for all classes is shown in
Figure 10, laid over the results for each class. We observe that a
training set using 10% of the shapes in our dataset (in the order of
60 shapes), already has an average RC of over 0.9, implying that
this is a sufficient number of shapes for training an accurate model.

Weight learning. When inspecting the weights learned for each
property, we observe that the weights are different in each category,
demonstrating that some properties are more relevant than others
for capturing different functionalities. Moreover, there are no prop-
erties with a weight of zero for all classes, both for the unary and
binary properties, implying that all the pre-defined properties are
useful for a range of different categories. We show a plot of the
weight of each property in the supplementary material.



Figure 12: Results of a user study where the bars show the agree-
ment of our functionality score with the score derived from users.
The agreement is computed for each category in terms of the RC.

Matching and prediction. We analyzed the matching of interactions
and tree isomorphism of ICON descriptors used by our method for
training. We observed that they are quite robust in practice, being
correct in the large majority of cases. This is the case since we are
mainly interested in the correct matching of nodes at higher levels
of the hierarchies, which is robustly implied by multiple interac-
tions. Given that different scenes can have different numbers of
interacting objects, the matching of individual nodes is not used by
our method. Thus, any inaccuracies at the finer level of the match-
ing do not have detrimental effects on the results. Moreover, we
also observed that the prediction of patches on shapes with high
functionality scores is robust, leading to meaningful predictions.

Learning of functionality. One may argue that our method
merely learns object categories based on interaction and contextual
attributes. However, we remark that our model discovers the func-
tionality of a given category, and separates functional properties of
the objects from properties related mainly to the geometry of the
shapes. Thus, using our models can reveal similar functionalities in
objects from other categories. To demonstrate this claim and assess
how well our models discover the functionality of different cate-
gories, we start by computing the amount of correlation between
the classes according to the functionality distances. The rationale
behind this experiment is that categories with similar functionality
will be more correlated, with shapes of both classes having a low
functionality distance to each category.

We evaluate the correlation in terms of a correlation matrix between
all pairs of categories in our dataset. To compute an entry (i, j) of
this matrix, we apply the model of class i to predict the score of
shapes in class j. Next, we obtain the average distance of all shapes
in class j, which provides the closeness of class j to class i in terms
of functionality. Figure 11 shows the inverse of the distances for
all the classes in our dataset, where larger values (shown in yellow)
imply more correlation.

We observe that objects that naturally have a similar function, such
as desks, tables and TV benches, or strollers and handcarts, have
the most correlation. We also see that objects with totally different
functionality, such as desks and hangers, or chairs and stands, have
practically no correlation. Perhaps more interestingly, tables and
shelves, although being typically composed of flat surfaces, have
low correlation, as the interactions involved in the functionality of
these shapes are of a different nature.

User study on functional similarity. To demonstrate more conclu-
sively that we discover the functionality of shapes, i.e., the func-
tional aspects of shapes that can be derived from the geometry of
their interactions, we conducted a small user study with the goal

Figure 13: Object recognition performed with our functionality
model. The plot shows the precision-recall of the object rankings
given by the models of different classes. The red line is the aver-
age for all classes, while the gray lines are individual classes. The
closer the lines are to point (1, 1), the higher the ranking quality.

of verifying the agreement of our model with human perception.
Specifically, we verified the agreement of our functionality scores
with scores derived from human-given data. In order to do this,
we created queries consisting of a central object A appearing in the
context of a scene, and a second object B in isolation. We ran-
domly sampled 10% of the shapes from our dataset as objects B,
and compare to the 15 categories in our dataset (objects A). Next,
we presented a random set of such queries to each study participant.
We asked users to rate, in a scale from 1 to 5, how well B substitutes
object A in the scene in terms of performing the same function. To
reduce any ambiguity in the understanding of the function of ob-
ject A, we in fact showed four objects from the same category as
A in different scenes, to help the users in generalizing the function-
ality of object A. Example queries are shown in the supplementary
material. We collected 60 queries from each user; we had 72 users.

To evaluate the agreement between the user ratings and our scores,
we use the RC. Recall that the RC measures the quality of a rank-
ing in terms of pairs, where one shape in the pair is from the same
category as the model and the other shape is from outside this cat-
egory. Thus, for a specific category, we create such pairs of shapes
according to our functionality score, where we determine if a shape
is inside or outside the category with the category thresholds de-
scribed below in the application of functional similarity. Then, we
use the RC to verify the agreement of the user ratings with the pairs
defined by our functionality score.

Figure 12 shows the agreement for each category, where the red
bars denote the agreement estimated on all the collected data, while
the blue bars denote the agreement after cleaning some of the user
data. To remove unreliable data, we compute the standard deviation
of the rating given to each shape and category pair by all users, and
remove any query responses where the deviation is larger than 1
(since ratings range from 1 to 5). The average RC for all classes is
0.86 and 0.90, before and after filtering, respectively.

We see in the plot that, users agree at least 80% with our model
for 12 out of 15 categories. We analyzed the responses for the cat-
egories with lower agreement, and conjecture that there are two
main reasons for the results. First, users may recognize a common
functionality in different types of interactions. For example, users
seem to believe that drying racks can also function as hooks. This
is reasonable since we can hang clothes on both types of objects.
However, the way that clothes are hung on both classes is different
(horizontally or on a hook), which leads to two different types of
interactions. Moreover, users may also be able to perform partial
matching of objects, so that they may believe for example that a ta-
ble can hold objects just as well as baskets in static scenarios, while



Figure 14: Comparison of our functionality model to ICON and
LFD, in terms of the precision-recall of retrieval simulated on our
dataset. Note the better performance of our model and ICON over
LFD, where ICON requires an input scene for each shape, while
our model predicts the functionality of shapes given in isolation.

in general baskets are more suitable for storing objects when we
would like to transport these objects.

8 Applications

In this section, we demonstrate potential applications enabled by
our functionality model. In particular, the spatial localization af-
forded by our model allows it to be applicable in several modeling
tasks, while previous functionality models such as affordance mod-
els were designed for discrimination.

Recognition. To use our approach for determining the categories
of shapes, we can directly use the ranking of shapes provided by
each model to enable a form of shape retrieval, and evaluate the
ranking in terms of a precision-recall plot. First, we divide our
dataset into training and test sets. Next, we order all the shapes in
our test set according to the functionality distance computed with a
category model. Finally, given a target number of shapes t, we take
the t shapes with the lowest distances and verify how many of them
are of the same category as the model, counting the precision and
recall of this simulated retrieval.

Figure 13 shows the average precision-recall plots, for this experi-
ment, for all the classes in our dataset, laid over the individual plots
for each category. The plots for individual classes are shown with
labels in the supplementary material. We see that the accuracy of
recognition is high, with a precision of over 0.8 for a recall of up to
0.8 on average. The classes with precision-recall under the average
are Desk, Drying Rack, Handcart, and Table, which are some of the
classes that have similar functionality to other classes, explaining
the lower recognition rates due to class correlation.

We also compare our method with the retrieval provided by the
ICON descriptor [Hu et al. 2015] and the lightfield descriptor
(LFD) [Chen et al. 2003], which serves as a baseline comparison to
our method. Since we perform retrieval with a functionality model
learned from a training set, to provide a fair comparison with LFD
and ICON, we also use the training sets for retrieval with these de-
scriptors. Specifically, for a given class, we compute the average
distance from all the models of this class in the training set to each
shape in the test set, which we denote µp. Next, we rank the test
shapes according to µp and measure the precision and recall of the
simulated retrieval. We also evaluate an alternative approach where
we make use of negative examples of the class, as in the training
of our model. We compute the average distance to all the nega-
tive examples in the training set, denoted µn. Then, we rank the
test shapes based on µp − µn, to retrieve shapes that are close to
the training shapes of the same class but far from the negative ex-

(a) (b)

Figure 15: Embedding of the shapes in our dataset obtained with
multi-dimensional scaling, according to our functionality distance
in (a), and the similarity of lightfield descriptors in (b).

amples of the class. Note that, in the case of ICON, we perform
this experiment with the scenes provided with the shapes, as this
descriptor does not operate on individual objects.

Figure 14 shows the results of this experiment. We observe that
our approach and ICON provide better retrieval results than LFD,
as these two approaches take into account the interactions between
objects. ICON and our model have a similar performance as both
approaches represent interactions in a similar manner, although we
recall that ICON needs a context scene to be provided for each test
shape, while our functionality model predicts the functionality of
shapes in isolation.

Functionality similarity. We derive a measure to assess the sim-
ilarity of the functionality of two objects. Given a functionality
model and an unknown object, we can verify how well the object
supports the functionality of a category. Intuitively, if two objects
support similar types of functionalities, then they should be func-
tionally similar, such as a handcart that supports similar interactions
as a stroller. However, the converse is not necessarily true: if two
objects do not support a certain functionality, it does not necessarily
imply that the objects are functionally similar. For example, the fact
that both a table and a backpack cannot be used as a bicycle does
not imply that they are functionally similar. Thus, when comparing
the functionality of two objects, we should take into consideration
only the functionalities that each object likely supports. To perform
such a comparison, we decide whether an object supports a certain
functionality only if its functionality score, computed with the cor-
responding model, is above a threshold.

More specifically, since we learn 15 different functionality models
based on our dataset, we compute 15 functionality scores for any
unknown shape. We concatenate all the scores into a vector of func-
tional similarity FS = [fS

1 , f
S
2 , ..., f

S
n ] for shape S, where n = 15.

We then determine whether the shape supports a given functional-
ity by verifying if the corresponding entry in this vector is above a
threshold. We compute the thresholds for each category based on
the shapes inside the category using the following procedure. We
perform a leave-one-out cross validation, where each shape is left
out of the model learning so that we obtain its unbiased function-
ality score. Next, we compute a histogram of the predicted scores
of all the shapes in the category. We then fit a Beta distribution to
the histogram and set the threshold ti, for category i, as the point
where the inverse cumulative distribution function value is 0.01.

The functionality distance between two shapes is then defined as

D(S1, S2) =

n
∑

i=1

φ
(

f
S1

i , f
S2

i , ti

)

/

|J |, (9)

where

φ(x, y, t) =

{

‖x− y‖2, if max(x, y) > t,
0, otherwise.

(10)
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Figure 16: Scale selection with our functionality model: since ob-
jects can perform various functionalities when at different scales,
we use our model to select the proper object scale for a scene.

The function φ considers a functionality only if either S1 or S2

supports it, while J = {i|min(fS1

i , f
S2

i ) > ti, i = 1, ..., n} is the
set of functionalities that are supported by both S1 and S2.

In Figure 15, we show a 2D embedding of all the shapes in our
dataset obtained with multi-dimensional scaling, where the Eu-
clidean distance between two points approximates our functional-
ity distance between two shapes. We compare it to an embedding
obtained with the similarity of lightfield descriptors of the shapes.
Note how, in our embedding, the shapes are well distributed into
separate clusters, while the clusters in the lightfield embedding have
significant overlap. Moreover, the overlaps in the embedding of our
distance occur mostly for the categories that have functional corre-
lation, as shown before by the correlation matrix in Figure 11.

Detection of multiple functionalities. As shown in Figure 1, a
chair may serve multiple functions, depending on its pose. To dis-
cover such multiple functionalities for a given object using the func-
tionality models learned from our dataset, we sample various poses
of the object. For each functionality model learned of a category,
the object pose that achieves the highest functionality score is se-
lected. Moreover, based on patch correspondence inferred from the
prediction process, we can also scale the object so that it can replace
an object belonging to a different category, in its contextual scene.
Figure 16 shows a set of such examples. For each pair, we show on
the left the original object in a contextual scene to provide a con-
trast; the scene context is not used in the prediction process. On the
right, we show the scaled object serving a new function. We believe
that this type of exploration can potentially inspire users to design
objects that serve a desired functionality while having a surprising
new geometry.

Functionality enhancement. Given a functionality model M,
if a shape has a relatively high functionality score according to the
model, but still below the corresponding threshold of the category,
we can guide a user in enhancing the shape so that it better supports
the functionality. For each predicted functional patch, we find the
most similar patch in the dataset, i.e., the nearest neighbor patch.
Then, we take the geometry of the nearest neighbor patch and blend

Figure 17: Functionality enhancement: the chair on the left is en-
hanced by patch transfer so that it can serve as a handcart.

it onto the region of the shape corresponding to the predicted patch.
Note that such an enhancement is only meaningful when the shape’s
functionality is close to that of the model, since otherwise the pre-
dicted patches may be meaningless. Figure 17 shows an example
of this application, where we transfer the geometry of patches of
the handcart category to enhance a chair, so that it better serves as
a handcart. Note that, in this example, the user manually adjusted
the blending of the geometry, while the selection of geometry and
patches is automatic.

Functional hybrids. We can also use the proto-patches to guide
a user in creating objects that are functional hybrids, preventing the
modeling from being an exhaustive trial-and-error process. For ex-
ample, given a table and shelf, we can guide the creation of a shape
that more effectively blends the functionality of these two objects.
Given two shapes S1 and S2 to hybridize, and models of their cor-
responding categories, we first detect the functional patches of each
shape. Next, we analyze the prediction results to suggest regions of
the shapes where the users can add or blend patches to preserve the
shape functionalities. We provide two types of hybridizing sugges-
tions: (i) A functional patch of shape S1 can be attached to regions
of S2 that do not support any functional patch, so that the patches of
S2 are not damaged, and at the same time the functional space of S1

is not obstructed. (ii) If two patches, one from each shape, serve the
same functionality, we can merge them together so that we obtain a
single patch on the hybrid shape that serves this functionality.

Figure 18 shows examples of hybrids created with this guidance
process. Note how, given two objects, the functionality of both ob-
jects is preserved in the hybrid due to the localized guidance offered
by the functionality model. The example in cell (a) is created with
suggestion type (i), where it is detected that the back of the chair is
not involved in any type of interaction, and so we can attach a hook
to it without damaging the functionality of the chair. Similarly, ex-
ample (c) is obtained by blending the shelf to the edge of the table,
since when the shelf is attached to that portion of the table, the func-
tionality is affected the least. In contrast, (f) shows a user-provided
case that has a low score according to our model, since the func-
tionality of the shelf is obstructed when someone is sitting at the
table. In the third column of Figure 1, we see a hybrid obtained
with suggestion type (ii), where a vase and table are blended by
merging their support patches that interact with the floor.

9 Conclusion, limitation, and future work

In this work, we are mainly concerned with the “where” and “how”
of functionality analysis of 3D objects. Beyond obtaining a descrip-
tion of functionality, e.g., [Kim et al. 2014; Hu et al. 2015], which
can discriminate between objects, we are interested in learning how
a function is performed, by discovering the interactions responsi-
ble for the function and the surface patches that contribute to the
function. Through co-analysis, we learn a functionality model for
a given object category. The learned category functionality models



(a) (b) (c)

(d) (e) (f )

Figure 18: Functional hybrids created with guidance from our
functionality model in (a)-(e). Note how the functionality of the
original objects is preserved in the hybrids, in contrast to the user-
given configuration in (f).

allow us to both infer the functionality of an individual object and
perform functionality-aware shape modeling.

Limitations. Our functionality analysis is entirely based on rea-
soning on the geometry of shapes. As a result, our model could
recognize a backpack as a vase, as shown in Figure 19. In this case,
perhaps only a touch to feel the material would make the right dis-
tinction. Indeed, we learned from users’ feedback that sometimes,
their judgement on functionality is influenced by a recognition of
material. Geometrically speaking, a drying rack as the one shown
in Figure 16(f), when properly scaled, can be put on one’s back as
a backpack. But that functionality is hardly recognized since most
people would assume the rack is made of metal.

The “how” in our functionality analysis is limited to extracting in-
formation from static configurations of object interactions. It would
be an entirely new pursuit to understand the “how” by observing
and learning from dynamic human-to-object and object-to-object
interactions. SceneGrok [2014] is a step towards this direction. Last
but not the least, while localizing functionality analyses to the patch
level is a strength of our work, we only learn patch-level properties
and pairwise relations between patches. This may prevent us from
discovering certain global properties related to functionality, e.g.,
the instability of the hanger in Figure 16(c).

Future work. An interesting future problem is to examine how
the proto-patches obtained from our co-analysis can be combined to
build functionality models at varying granularity levels. For exam-
ple, each of the rolling, storage, and support functionalities of the
handcarts is supported by a combination of proto-patches for that
category. These distinctive functionalities, which may help relate
objects between different categories, are not studied by our current
work. We believe that a study of higher-order, or even hierarchi-
cal, relations between the proto-patches is worth considering, so is
cross-category functionality analysis. These pursuits would enrich
and strengthen all the functionality-aware analysis and modeling
applications we have discussed in this paper.

Acknowledgements

We would like to thank all the reviewers for their comments and
suggestions. This work was supported in part by grants from NSFC
(61522213, 61528208, 61379090), 973 Program (2014CB360503,
2015CB352501), Guangdong Science and Technology Program

Figure 19: The backpack (left) is recognized as a vase, as its geom-
etry supports similar interactions as vases, shown with the detected
patches and nearest neighbors in the middle and right.

(2015A030312015, 2014B050502009, 2014TX01X033), Shen-
zhen Innovation Program (JCYJ20151015151249564), NSERC
(611370, 2015-05407) and ISF-NSFC (2216/15).

References

BAR-AVIV, E., AND RIVLIN, E. 2006. Functional 3D object clas-
sification using simulation of embodied agent. In British Ma-
chine Vision Conference, 32:1–10.

BREIMAN, L. 2001. Random forests. Machine learning 45, 1,
5–32.

CHEN, D.-Y., TIAN, X.-P., SHEN, Y.-T., AND OUHYOUNG, M.
2003. On visual similarity based 3D model retrieval. Computer
Graphics Forum (Proc. of Eurographics) 22, 3, 223–232.

FISH, N., AVERKIOU, M., VAN KAICK, O., SORKINE-
HORNUNG, O., COHEN-OR, D., AND MITRA, N. J. 2014.
Meta-representation of shape families. ACM Trans. on Graphics
33, 4, 34:1–11.

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND

HANRAHAN, P. 2012. Example-based synthesis of 3D object
arrangements. ACM Trans. on Graphics 31, 6, 135:1–11.

FISHER, M., LI, Y., SAVVA, M., HANRAHAN, P., AND

NIESSNER, M. 2015. Activity-centric scene synthesis for func-
tional 3D scene modeling. ACM Trans. on Graphics 34, 6,
212:1–10.

GRABNER, H., GALL, J., AND VAN GOOL, L. 2011. What makes
a chair a chair? In Proc. IEEE Conf. on Computer Vision &
Pattern Recognition, 1529–1536.

GREENE, M. R., BALDASSANO, C., BECK, D. M., AND FEI-FEI,
L. 2016. Visual scenes are categorized by function. Journal of
Experimental Psychology: General 145, 1, 82–94.

HU, R., ZHU, C., VAN KAICK, O., LIU, L., SHAMIR, A., AND

ZHANG, H. 2015. Interaction context (ICON): Towards a geo-
metric functionality descriptor. ACM Trans. on Graphics 34, 4,
83:1–12.

JIANG, Y., KOPPULA, H. S., AND SAXENA, A. 2013. Halluci-
nated humans as the hidden context for labeling 3D scenes. In
Proc. IEEE Conf. on Computer Vision & Pattern Recognition.

KIM, V. G., CHAUDHURI, S., GUIBAS, L., AND FUNKHOUSER,
T. 2014. Shape2Pose: Human-centric shape analysis. ACM
Trans. on Graphics 33, 4, 120:1–12.

LAGA, H., MORTARA, M., AND SPAGNUOLO, M. 2013. Geom-
etry and context for semantic correspondence and functionality
recognition in manmade 3D shapes. ACM Trans. on Graphics
32, 5, 150:1–16.



MITRA, N., WAND, M., ZHANG, H., COHEN-OR, D., AND

BOKELOH, M. 2013. Structure-aware shape processing. In
Eurographics State-of-the-art Report (STAR).

SAVVA, M., CHANG, A. X., HANRAHAN, P., FISHER, M., AND

NIESSNER, M. 2014. SceneGrok: Inferring action maps in 3D
environments. ACM Trans. on Graphics 33, 6, 212:1–10.

SCHMIDT, M., VAN DEN BERG, E., FRIEDLANDER, M. P., AND

MURPHY, K. 2009. Optimizing costly functions with sim-
ple constraints: A limited-memory projected quasi-Newton al-
gorithm. In Proc. Int. Conf. AI and Stat., 456–463.

SCHULTZ, M., AND JOACHIMS, T. 2004. Learning a distance met-
ric from relative comparisons. Advances in neural information
processing systems (NIPS), 41.

STARK, L., AND BOWYER, K. 1991. Achieving generalized object
recognition through reasoning about association of function to
structure. IEEE Trans. Pattern Analysis & Machine Intelligence
13, 10, 1097–1104.

STARK, L., AND BOWYER, K. 1996. Generic Object Recognition
Using Form and Function. World Scientific.

XU, K., MA, R., ZHANG, H., ZHU, C., SHAMIR, A., COHEN-
OR, D., AND HUANG, H. 2014. Organizing heterogeneous
scene collection through contextual focal points. ACM Trans. on
Graphics 33, 4, 35:1–12.

YUMER, M. E., CHAUDHURI, S., HODGINS, J. K., AND KARA,
L. B. 2015. Semantic shape editing using deformation handles.
ACM Trans. on Graphics 34, 4, 86:1–12.

ZHAO, X., WANG, H., AND KOMURA, T. 2014. Indexing 3D
scenes using the interaction bisector surface. ACM Trans. on
Graphics 33, 3, 22:1–14.

ZHU, Y., FATHI, A., AND FEI-FEI, L. 2014. Reasoning about
object affordances in a knowledge base representation. In Proc.
Euro. Conf. on Computer Vision.

A Unary and binary properties

We list here the properties used in the functionality model, where
we assume that the input shapes are consistently upright-oriented.
Some of the properties are similar to the ones used by Kim et
al. [2014] and Hu et al. [2015].

We first describe the point-level unary properties. We take a small
geodesic neighborhood of a point and compute the eigenvalues
λ1 ≥ λ2 ≥ λ3 ≥ 0 and corresponding eigenvectors µi of the
neighborhood’s covariance matrix. We then define the features:

L =
λ1 − λ2

λ1 + λ2 + λ3
; P =

2(λ2 − λ3)

λ1 + λ2 + λ3
; S =

3λ3

λ1 + λ2 + λ3
;

which indicate how linear-, planar- and spherical-shaped the neigh-
borhood of the point is. We also use the neighborhood to compute
the mean curvature at the point and average mean curvature in the
region. In addition, we compute the angle between the normal of
the point and the upright direction of the shape, and angles between
the covariance axes µ1 and µ3 and the upright vector. The projec-
tion of the point onto the upright vector provides a height feature.
Finally, we collect the distance of the point to the best local reflec-
tion plane, and encode the relative position and orientation of the
point in relation to the convex hull. For this descriptor, we connect
a line segment from the point to the center of the shape’s convex
hull and record the distance of this segment and the angle of the
segment with the upright vector, resulting in a 2D histogram. To

capture the functional space, we record the distance from the point
to the first intersection of a ray following its normal, and encode
this as a 2D histogram according to the distance value and angle
between the point’s normal and upright vector. The distances are
normalized by the bounding box diagonal of the shapes and, if there
is no intersection, the distance is set to the maximum value 1.

The patch-level unary properties are then histograms capturing the
distribution of the point-level properties in a patch, as explained in
Section 5. We use histograms composed of 10 bins, and 10× 10 =
100 bins specifically for 2D histograms.

For the binary properties, we define two properties at the point-
level: the relative orientation and relative position between pairs
of points. For the orientation, we compute the angle between the
normal of two points. For the position, we compute the length and
the angle between the line segment defined between two points and
the upright vector of the shape. The patch-level properties derived
for two patches i and j are then 1D and 2D histograms, with 10 and
10 × 10 = 100 bins, respectively.

B Gradient for optimization of the objective

We derive the gradient of our objective function here, which we
need for the optimization with PQN. The unary distance measure
can be re-expressed as the following smooth function:

Du(W,M) =
∑

uk

ω
u
k ‖BkW −Nk‖

2
F

=
∑

uk

ω
u
k tr

(

(BkW −Nk)
T (BkW −Nk)

)

=
∑

uk

ω
u
k

(

tr(WT
B

T
k BkW )

− 2tr(WT
B

T
k Nk) + tr(NT

k Nk)
)

.

(11)

The gradient of the unary term is then given by:

▽WDu(W,M) = 2
∑

uk

ω
u
k B

T
k (BkW −Nk). (12)

When considering multiple neighbors Nk, we simply sum the gra-
dient for each neighbor, due to the additive property of gradients.

Similarly, the binary distance measure can be re-expressed as the
following smooth function:

Db(W,M) =
∑

bk

nb
k
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(13)

Since both B
b
k,l and Nb

k,l are symmetric, the gradient of the binary
term is then given by:

▽WDb(W,M) = 4
∑

bk

nb
k

∑

l=1

ω
b
k B

b
k,lW (WT

B
b
k,lW −N

b
k,l).

(14)


