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We introduce a method for co-locating style-defining elements over a set

of 3D shapes. Our goal is to translate high-level style descriptions, such as

“Ming” or “European” for furniture models, into explicit and localized regions

over the geometric models that characterize each style. For each style, the

set of style-defining elements is defined as the union of all the elements

that are able to discriminate the style. Another property of the style-defining

elements is that they are frequently-occurring, reflecting shape characteristics

that appear across multiple shapes of the same style. Given an input set of 3D

shapes spanning multiple categories and styles, where the shapes are grouped

according to their style labels, we perform a cross-category co-analysis of the

shape set to learn and spatially locate a set of defining elements for each style.

This is accomplished by first sampling a large number of candidate geometric

elements, and then iteratively applying feature selection to the candidates,

to extract style-discriminating elements until no additional elements can be

found. Thus, for each style label, we obtain sets of discriminative elements that

together form the superset of defining elements for the style. We demonstrate

that the co-location of style-defining elements allows us to solve problems

such as style classification, and enables a variety of applications such as style-

revealing view selection, style-aware sampling, and style-driven modeling for

3D shapes.
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Fig. 1. These pieces of furniture have known coherent styles. Can

we analyze their geometry and extract locatable style elements which

define the different style groups?

1 INTRODUCTION

In recent years, there has been an increasing interest in studying

the style of shapes [14, 16, 17, 19, 33]. In the visual arts, style

is defined as “a distinctive manner which permits the grouping of

works into related categories” [6], or “any distinctive, and therefore

recognizable, way in which an act is performed or an artifact made

or ought to be performed and made” [9]. Although these definitions

imply that notions of style provide a rationale for grouping objects

or artifacts, the apparent challenge, as well as the intriguing aspect,

of the style analysis problem is that characterizations of individual

styles are inherently abstract, ambiguous, and subjective. Human

notions of style are typically conceived at a high level and stated

in vague and non-descriptive terms, e.g., classic vs. contemporary,

realistic vs. cartoonish, and it is often difficult to break them down

to low-level, objective descriptors. However, styles of all kinds are

constantly imitated, prompting the inevitable question of how styles

can be concretely extracted and applied.
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In this paper, we study the problem which concerns the what and

where of style elements, where the elements refer to local regions of

a shape that define its style. Specifically, we aim to translate high-

level and non-descriptive languages of object styles typically used

by humans, e.g., “Japanese” or “Ming” for furniture, into explicit

and localized geometric elements or regions over the models that

characterize the styles (see Figure 1). These elements would then

explicitly reflect the “distinctive manners which permit the grouping

of shapes into style categories” from Fernie’s definition. In addition

to enabling analysis, the spatially located concrete elements can

be manipulated directly, e.g., for style-driven modeling. In contrast,

some of the most recent works on style analysis either take a wholistic

view of shape styles, learning a style compatibility measure without

separating individual style elements [16], or require a geometric

match between portions of two shapes to yield a style similarity

measure [17]. To date, works which deal directly with style-defining

properties either explicitly specify the properties a priori [33] or rely

on hand-crafted rules to define the stylistic elements [14].

We take as input a set of diverse shapes organized into different

style labels, where the grouping is provided by human experts; see

Figure 2. Since the collection of shape styles studied in our work (see

Section 6) are closely tied to domain knowledge, expert-annotated

inputs are expected to be more reliable with less data contamination

compared to crowdsourced user groupings. Using such an input to co-

locate style elements is also well-motivated since it supports feature

selection for separation of shape styles.

Our goal is to find a set of defining elements for each style group.

To distinguish one style from the others, it is typically sufficient

to learn a set of discriminative elements, which corresponds to a

minimal set of elements that tell one style apart from the others.

However, to fully characterize a style and enable applications that

manipulate the styles, we need a set of elements that capture a more

complete characterization of the style. This more complete set is

precisely what we define as a set of defining elements. For example, to

differentiate between the Children and European furniture in Figure 2,

it is sufficient to look at whether the shape parts are smooth or

adorned with embellishments. However, to confer a shape with the

Children style, we may need to modify the shape beyond simply

removing the decorations from the parts, e.g., we need to add round

corners to the parts.

In contrast to previous work on saliency [12, 28], we note that style-

defining elements are different from geometrically salient regions.

Salient regions are typically unique or distinctive when compared

to other regions of the same shape [28]. On the other hand, style-

defining elements should be widespread across shapes of the same

style and form a type of collective property. For example, as seen

in Figure 2, smooth and round patches appear all over the Children

furniture, but rarely appear in other styles such as Ming and Japanese.

Therefore, these elements are distinctive features for a particular

(Children) style in the context of other styles, but not necessarily for

individual shapes. In addition, in our results in Figure 21, we show

how view-point selection based on saliency highlights different shape

aspects than when using style-defining elements.

Thus, given the goal of extracting style-defining elements, we pose

our search as a feature selection problem [32], where the selected

“features” would lead us to the elements we seek. Note that we

reserve the term “element” to refer to concrete, locatable regions

over a 3D shape. “Features”, visually explicit or latent, serve to

describe the elements themselves. In our method, we first sample

a set of candidate elements from all the input shapes, and describe

each element with multiple features. Specifically, the elements are

geometric patches extracted from the surfaces of the input shapes.

Our goal is then to select the candidate elements that, when present

on a shape, are able to define the style of the shape and distinguish it

from other styles. For this step, we introduce a novel iterative method

for finding a set of style-defining elements based on feature selection

applied to the candidate elements. Specifically, the feature selection

allows to find sets of discriminative elements that distinguish among

different styles. The union of all the sets of discriminative elements

then provides a superset of elements that constitute the style-defining

elements. Although there is redundancy in this set if our only goal

is style classification, the redundancy provides a more complete

characterization of a style by capturing the possible elements that

can be present on a shape to define the style, which can be of use to

certain applications beyond classification.

The explicit description and location of the style-defining elements

can benefit several applications for content creation, since it may be

difficult for an artist or automatic algorithm to create a shape in a

given style just from an abstract high-level description. The defining

elements are thus a concrete description of how to grant a specific

style to an object. Also, given the nature of the elements we select,

we do not require a correspondence between source and target shapes,

in contrast to style analysis methods that transfer styles between 3D

shapes by analogy [19], that match portions of shapes [17], or require

a consistent segmentation of shapes across the input set [16].

To demonstrate the advantages of our method, we present several

applications that are made possible by one of the key abilities of

our approach: the spatial localization of elements. The applications

include style-revealing view selection, style-aware sampling, and

style-driven modeling. In addition, we show results on using the

style-defining elements to analyze and classify the styles of various

collections of man-made objects, and present comparisons of our

method to alternative approaches that could be used to address the

selection of elements, concluding that our method is more effective

than these alternatives.

2 RELATED WORK

In this section, we cover works related to the analysis and comparison

of image or shape styles, following with a discussion on feature

selection, which is the main building block in our method.

Style and content analysis on images. There have been many works

on style analysis for images, where style can be loosely seen as a set

of characteristics that allow a meaningful grouping of images. Here,

we discuss the works that are most relevant to our method.

Doersch et al. [5] find image patches that are characteristic of a

specific geospatial location. The patches are extracted from a large
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EuropeanJapaneseChildrenMing

Fig. 2. A sample of a set of shapes given as input to our style co-analysis. The style groups have the labels on top and are rendered in different

colors. Note that our method is applicable to a wide variety of shape categories and styles beyond furniture, as shown in Section 6.

dataset of images and can be seen as the elements that define the style

of a city like Paris or some other specific location. Rather than using

clustering to find representative patches, which may be influenced

negatively by the large amount of irrelevant patches, they address the

problem by sampling patches that are discriminative of a location.

In their problem setting, an individual patch can solely serve as a

representative of a location. Therefore, there is no need to perform

any feature selection or build sets of style-defining elements, which

is the goal in our work.

Instead of searching for static image patches that define a location,

Lee et al. [13] focus on dynamic visual elements and discover image

patches that gradually change in time or location. After detecting

visual elements that are style-sensitive, their method establishes

correspondences between elements in the dataset and models their

range of variation across time or space. Arietta et al. [1] generalize

the idea of a style label to any non-visual attribute, such as housing

prices in a city. Similarly to Lee et al., the method first detects visual

elements that discriminate an attribute, but then trains a predictor that

relates the visual elements to the attributes.

Several methods for summarizing image content have also been

proposed in the literature, such as seam carving [2] and bidirectional

similarity [29]. Instead of naively resizing or cropping an image, the

goal of these methods is to preserve the distinctive visual content

of the image. Our approach also follows this general principle of

detecting distinctive visual elements of 3D models, although the

elements we detect are not generic, but related to the style labels of

the shapes.

Style transfer by analogy. Earlier works on style transfer focused on

curves and drew inspiration from the seminal work by Hertzmann

et al. [10] on curve analogies, where a curve is synthesized by anal-

ogy to an exemplar. This method follows an approach similar to

texture synthesis, where portions of an exemplar curve are randomly

transferred to a base curve to confer the base with the style of the

exemplar. Rather than using a single exemplar, Freeman et al. [7]

combine strokes from a training set of hundreds of lines in the same

style to synthesize a curve with a consistent style. Recently, Lang and

Alexa [11] synthesize a curve from an exemplar by using a hidden

Markov model that captures the distributions of features along the

exemplar curve.

Berger et al. [3] learn different styles and levels of abstraction of

face sketches drawn by different artists. Their approach analyzes

the characteristics of both strokes and the structure of the faces,

and learns several stroke properties that define each artist’s style.

Majerowicz et al. [20] generate arrangements of objects placed on

horizontal support-surfaces, such as shelves and cabinets, from a

single exemplar that can be a photograph or 3D scene. Their method

also considers different features and their locations. However, the

features are replicated from a single exemplar.

Ma et al. [19] apply the analogy approach to 3D shapes. Rather than

simply transferring the style of an exemplar to a base shape, they take

as input a source shape similar to the exemplar and a target shape,

and synthesize a new shape that follows the structure of the target

but possesses the style of the exemplar. Their approach requires a

correspondence between the source and base shapes and an analogy

relationship between the source and target. The latest work by Lun et

al. [18] takes the above analogy idea further by enforcing function-

ality preservation of the target shape. The style of the exemplar is

transferred to a target with a sequence of element-level operations.

The method learns a cross-structural element compatibility metric

and only applies operations on the target shape which do not affect

the functionality of the target.

It is interesting to observe that automated style transfer between

shapes can be thought of as a way for style identification. Namely,

whatever shape elements or properties that are determined to be

transferable are style-defining. In this light, style identification by

transfer and analogy is, in essence, a shape differentiation over the
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exemplar pair. In contrast to these approaches, our style extraction

does not require a correspondence between a base and exemplar

shape, nor a mapping between portions of the shapes as in the curve

analogy works. In addition, we learn style-defining elements from

a set of examples, in a co-analysis framework, which allows us to

obtain a more general model for a style.

Style co-analysis. Rather than working with individual shapes or a

training set, style co-analysis can work with a style-content table

of a set of shapes to extract features that characterize a style. Xu

et al. [33] pre-determine the style-defining features, namely, part

proportions, and perform a forward co-analysis to group the feature

variations that define different styles. In comparison, we formulate

our problem as an inverse analysis, since we select style-defining

elements from a large pool of candidates and are able to locate them

on specific regions of the shapes. Our input is a style grouping and

not a more granular style-content table. Li et al. [14] restrict their

analysis to curve styles of 2D shapes that are decorative in nature

and group stylistic curve features based on a set of hand-crafted rules.

In contrast, our style analysis is data-driven and more general, since

we define a varied set of candidate elements, and then extract the

relevant style-defining elements from this set via feature selection.

Learning style similarities. An alternate line of works proposes to

define global style similarity measures, where multiple features are

considered when quantifying the similarity between the styles of two

models, but without explicitly selecting sets of style-defining ele-

ments. Most notably, Lun et al. [17] define a structure-transcending

similarity measure to compare the style of two shapes. The method

searches for pairs of matching salient geometric elements across

the shapes, and determines the amount of similarity based on the

number of matching elements. The measure is tuned with crowd-

sourced training data that captures examples of style similarities. Liu

et al. [16] also make use of crowdsourced relative assessments of

style compatibility, but focus on the domain of 3D furniture models.

Their metric for stylistic compatibility is based on obtaining a consis-

tent segmentation of the input shapes and quantifying the similarity

of their styles with part-aware feature vectors. The key distinction

between our method and these works is that we explicitly identify

the style-defining elements over the input shapes. Another technical

difference lies in the input specifications: our method takes style

grouping information from expert annotations while their methods

were built on large sets of data triplets with style ranking information

collected via crowdsourcing.

Furthermore, the style of other types of geometric datasets can also

be compared with similar approaches. Garces et al. [8] propose

a style similarity measure for clip art illustrations that is learned

from crowdsourced similarity estimates, while O’Donovan et al. [22]

propose a learning approach to obtain a perceptual similarity measure

of fonts. In contrast to these works, our goal is to find a complete set

of style-defining elements and locate them on the shapes, rather than

defining only a global similarity.

Shape comparison and retrieval. In our method, we do not require

correspondences between shapes to extract collection-wide style

elements. To achieve that, we encode shapes as bag-of-words repre-

sentations. There have been many works in shape retrieval on how

to encode shapes efficiently for comparison [30], and also different

bag-of-words representations have been proposed [15, 31]. In our

method, we encode shapes with a word-frequency representation. We

compare this choice to an alternative encoding in Section 6, to show

that our representation is adequate for our setting.

Distinctive regions of 3D surfaces. Earlier work by Shilane et al. [26]

shares some resemblance to our method. That work also attempts

to extract distinctive regions over 3D shapes when given a multi-

category shape collection. The key conceptual difference between

the two works is that we seek style-defining elements while their

work seeks content-discriminating regions. They define the distinc-

tion of a surface region over a 3D object by how useful the region

is in distinguishing the object from other objects belonging to dif-

ferent categories, in the context of shape retrieval. Specifically, the

distinction for a region is high if, in a shape-based search of a data-

base with the region as the query, the resulting ranked retrieval list

would consist mostly of objects of the same category near the front.

Clearly, our interpretation of style-defining elements and the method

of element extraction are both different. We co-analyze a shape col-

lection via classification tasks, while their method performs shape

retrieval based on pairwise similarities. On the technical front, their

retrieval is based on a single shape descriptor (the spherical harmonic

descriptor) while our distance metric is learned over a set of features

for each candidate element. We believe that style-discriminating and

style-defining shape elements tend to be more local and more subtle,

compared to content-discriminating surface regions, so that the ensu-

ing analysis calls for a feature representation and selection scheme

that is more involved.

Feature selection. In statistical pattern recognition, there is a vast

literature on feature selection. In the context of classification, the

goal of these methods is to examine a large set of features to find a

subset that is sufficient for discriminating a given class from others,

eliminating redundancy and irrelevant features in the process. Feature

selection methods can be grouped into three broad categories: filter,

wrapper, and embedded methods [32]. Filter methods select features

according to their statistical properties, such as correlation. Wrapper

approaches test the performance of subsets of features by training a

classifier with these features and evaluating their classification accu-

racy. Thus, wrapper methods tend to be more demanding than filter

approaches due to the repeated training and use of a classifier. Em-

bedded methods perform feature selection while training a classifier,

and thus, offer a better balance between performance and accuracy.

In our work, we use a filter method, the minimal-redundancy-maximal-

relevance (MRMR) criterion [23], to efficiently select a set of candi-

date elements. MRMR incorporates several criteria that have been

shown to lead to a quality feature selection. We also refine the can-

didate set with a wrapper method, specifically, a standard forward

sequential feature selection method [32]. We provide more details

on these methods in Section 5. In Section 6, we also compare to

an embedded method, L1-regularized logistic regression [25], as an

alternative to our feature selection.
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Fig. 3. Overview of our method for the discovery of style-defining elements. (a) We collect a set of initial elements from regions of the shapes,

shown here as points in a 2D embedding. The distances between points reflect their similarity in terms of the features that describe them. Each

element has a style label (point color). No clear clusters are present. (b) We sample candidate elements (indicated by the crosses at the circle

centers) with an analysis of density, and learn a similarity measure for each element based on its nearest neighbors (points inside the circles). The

insets show the geometric patches corresponding to the elements in the embedding. (c) We combine the candidate elements to discover sets of

style-defining elements, e.g., E1 + E2 + E3 define the “red” style.

3 OVERVIEW

The input to our analysis is a set of shapes grouped into different

styles (Figure 2), where the shapes do not have to belong to the same

category. The goal of our method is to extract defining elements for

each style and co-locate them across the set.

One possible way of carrying out the co-location would be to first

compute a correspondence between all of the input shapes, since a

correspondence would indicate that two localized elements on cor-

responding regions of two different shapes should be recognized

as being the same defining element. However, establishing corre-

spondences for shapes in a varied set is quite challenging, especially

since the input contains shapes from different categories. Instead, we

follow an indirect approach and avoid the use of correspondences

by working in a feature space. Specifically, we describe a shape as

a “bag of words” from a dictionary of geometric elements extracted

from all input shapes. By learning what are the relevant “words” that

classify the shapes into the given style groups, we are then able to ob-

tain the sets of style-defining elements. By construction, the “words”

of the dictionary are localized. Therefore, the defining elements are

associated with specific regions of the shapes.

As motivated in the introduction, the defining elements should be

widespread across shapes of a style, and be able to provide a complete

characterization of the style. Thus, our analysis consists of two major

steps, illustrated in Figure 3. First, our method extracts a large set

of initial elements from the input shapes. Specifically, we consider

geometric patches extracted from the surfaces of the shapes, where

each patch is described by a set of features, e.g., a histogram of the

mean curvature on the patch. We then sample elements from the

initial set to create a set of candidate elements, where the candidates

occur frequently within at least one style set. We call them candidates

since not all of them are selected as defining elements. Thes initial

sampling and candidate selection are explained in more detail in

Section 4. In the second step of the method, we perform a feature

selection on the candidates to obtain sets of elements that are able to

discriminate among individual styles. The elements are then grouped

into larger sets of style-defining elements, implying that they form a

complete set of elements that not only discriminate, but fully describe

the style. We give more details about this step in Section 5.

4 CANDIDATE ELEMENTS

In this section, we describe the first step of our method, where we

create a large set of initial elements, and then sample from these

elements to build the set of candidates.

Extraction of initial elements. We first create a large set of initial

elements I from all of the input shapes, where the elements are geo-

metric patches extracted from the surfaces of the shapes. To handle

non-manifold shapes and polygon soups, we represent each shape

with a set of points. We sample Ns = 20, 000 points on each shape’s

surface using Poisson disk sampling. We then uniformly sample

Np = 200 points from the input point cloud, and use the sampled

points as patch centers. We grow each patch from its center while its

geodesic radius is below a threshold τ of the shape’s bounding box

diagonal. We explore different values for τ in the discussion. The

geodesic neighborhood of a point is based on the graph of k-nearest

neighbors (KNN) of all points, where k = 6.

Each element is then represented by a set of geometric features. We

first compute a series of point-level features for each patch. We use

features similar to those proposed by Lun et al. [17], including the

curvature of the points, saliency of point sets, ambient occlusion,

average geodesic distance, point height and upright angle, shape

diameter function (SDF), and PCA-based features. For each point-

level feature, we then collect all its values appearing in a patch and

create a histogram. We use from 16 to 64 bins for the histograms,

depending on the features. We enrich the patch-level features with

the point-feature histogram and D2 shape distribution of the patch.

Note that, for the computation of these features, we assume that the

input shapes are upright-oriented.
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Fig. 4. Elements selected on each shape that correspond to density

peaks. Note how the patches are representative of different stylistic

features, such as curved extremities and corners.

Sampling of candidate elements. We sample a set of candidate ele-

ments C from the set of initial elements I, where the elements C are

relevant to style analysis. In our problem, a substantial number of

elements are similar to each other, and not all elements are relevant to

characterize the different styles. This happens since our data is com-

posed of geometric patches that are less distinctive than, for example,

image patches. Thus, to avoid working with a large amount of similar,

irrelevant elements, we sample a set of candidate elements with a

density analysis applied to the intrinsic space of element similarities.

We compute the density of all the elements with the same style label,

and only keep elements that are density peaks. The density peaks

correspond to the cluster centers of initial elements within a style

set. By selecting only the density peaks, which are surrounded by a

high concentration of similar elements, we avoid selecting additional

elements that are similar to each other. At the same time, since the

elements are density peaks, they occur frequently within the style.

To compute the density in a robust manner, we use the clustering

method of Rodriguez and Laio [24]. The assumption of this method

is that cluster centers are surrounded by elements with lower local

density, and are at a relatively large distance from elements with

higher density, which enables the detection of several types of cluster

configurations. In detail, the distance di j between two elements is

computed by comparing the features of elements with the normalized

correlation. The local density ρi of an element ei is then defined as

ρi =
∑

j

χ (di j − dc ), (1)

where χ (x ) = 1 if x < 0, and 0 otherwise. The parameter dc is a

cutoff distance; we explain its selection below. We then define the

distance δi of an element to elements of higher density as

δi = min
j :ρ j>ρi

di j , (2)

with the distance for the element of highest density being a special

case defined as δi = maxj di j . We then take the top K elements of

a shape that have the largest values for δi , where K is determined

by using the variation of γi = ρiδi as suggested by Rodriguez and

Laio [24]. Note that, since Equation 2 considers the relative densities

of elements, the clustering is robust in relation to the choice of dc .

We set dc as the percentile corresponding to 2% of the pairwise

distances. In this way, we obtain the set of elements C. Figure 4

shows examples of the density peaks selected with this method.

Refinement of element distance. The normalized correlation that

compares two patches equally considers all their features, and does

(a) (b) (c)

Fig. 5. Refinement of the similarity measure for the element shown in

(a). (b) The initial measure finds similar elements in other shapes by

giving equal weight to all features. (c) The refined measure considers

only the features relevant to the style. We see how the similar elements

are composed only of horizontal tubular regions after the refinement,

which can have different heights instead of all being near the bottom

of the shapes.

not give more weight to the features that are truly relevant to a given

style. Therefore, to enable a more style-sensitive comparison of

elements, we learn a specialized distance measure for each candidate

element, using a discriminative learning algorithm. An example of

the effect of this refinement through learning is shown in Figure 5.

The specialized distance measures are then used in the steps of our

method described in the next section.

In detail, we train a linear SVM detector for each candidate element,

and use the nearest neighbors of the element as examples for learning.

We first detect the style labels that dominate the neighborhood of a

candidate element. We compute the histogram of labels that appear

in the neighborhood, and initialize the set of dominant styles with

the style that has the highest bin count in the histogram. Any labels

with a bin count higher than half of the maximum are then also

added to the set of dominant styles. We take the elements in the

neighborhood that are labeled with the dominant styles as positive

examples for learning, and elements with other labels as negative

examples [5]. After learning the similarity measure of the element,

we refine its neighborhood by finding its nearest neighbors with the

learned measure. By iterating this procedure, we obtain a specialized

distance measure for each element that better accounts for stylistic

similarities (Figure 5). Note that, once the dominant styles of an

element are determined, they are kept fixed throughout the iterations.

For the SVM detector, we learn a weight vector wi for each candidate

element ci ∈ C. The similarity of an element ej to a candidate

element ci is then given by

Sci (ej ) = w
T
i xj , (3)

where xj is the feature vector of ej . We learn the weights with the

convex optimization described in the work of Shrivastava et al. [27].

It has been shown that the performance of the detector is not com-

promised, even if some of the training samples are false negatives,

attesting for the robustness of using this procedure.

5 STYLE-DEFINING ELEMENTS

In the second step of our method, we combine the elements C into

sets of discriminative elements Ei , and use them to create the sets of
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... ... ...

(a) European (b) European (c) Children

Fig. 6. Illustration of the term vectors of three shapes with two different

styles, where elements of the same style are shown with the same

color. In all of the vectors, the entries that are in the same position

correspond to a common element. For example, the shape in (a) has

two instances of the element corresponding to the second entry, while

(b) has one such instance. The shape in (c), whose style differs from

that of (a) and (b), has instances of different entries, although the

fourth element is shared by the two styles.

defining elements Dj of each style j. We solve these two tasks with

a novel iterative method composed of an inner loop that performs

feature selection, and an outer loop that builds the sets of defining

elements by repeatedly invoking the inner loop.

Shape representation. Following the concept of bag-of-words, we

represent each shape as a vector t capturing the frequency of the ele-

ments C in the shape, which we call the term vector of the shape. This

is illustrated in Figure 6. Thus, t is anm-dimensional vector, wherem

is the number of elements in C. Each entry of t is an integer number

that counts how many times the corresponding candidate element

appears in the shape, normalized by the total number of elements

in the shape. An entry can have the value zero, if the corresponding

element does not appear in the shape.

To create the term vector for a shape S , we first extract elements

from S with the same procedure that we use to obtain the initial

elements for the training shapes. We then keep only the elements

that correspond to the ones in C, and create a term vector for the

shape by setting the entries corresponding to the detected elements.

To find what elements of S correspond to elements in C, we use

the SVM-based measure to compute the stylistic similarity of two

patches. We recall that the measure was trained for each individual

element during the candidate sampling. Thus, given an element e ∈ S ,

for every candidate c ∈ C, we compute the similarity Sc (e ) with

Eq. 3. We then say that we detected e as an instance of c, if the

similarity is larger than a threshold τp . We set τp = −1, since this is

the distance from the hyperplane that performs the regression in the

SVM classifier to the closest negative training sample.

Discriminative elements. The inner loop of our method selects the

style-discriminating elements with a combination of two feature se-

lection algorithms: a filtering method followed by a wrapper method.

Traditional wrapper feature selection algorithms sample many com-

binations of elements and test their discriminative power with the use

of a classifier. They are effective in selecting discriminative features.

However, the repeated use of a classifier for the consideration of

many feature combinations makes this an inefficient process. Thus,

(a) (b)
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Fig. 7. Example of a positive and negative discriminative element

selected for the European furniture style. For each element, we show

the histogram of the term vector entries corresponding to this element,

for all the shapes in the style. (a) According to the histogram, this is a

positive element, since it appears in several shapes of this style. (b)

This is a negative element, since it seldom appears in the shapes of

the style (entries with value 0 are the most common).

we first select a candidate set of elements F ⊂ C that are potentially

discriminative with the use of a more efficient filtering technique. We

perform the feature selection for each style separately, where each

shape or term vector has a binary label.

To filter out most of the non-discriminative elements, we employ

the minimal-redundancy-maximal-relevance (MRMR) criterion [23],

and keep only 20 elements after the filtering. The idea behind this

filtering approach is that elements that are discriminative are sta-

tistically dependent on the labels. This property can be quantified

by searching for the maximal relevance in terms of the mutual in-

formation between term vector entries and labels. Moreover, since

the combination of elements that work well individually does not

necessarily lead to good classification performance, we also search

for vector entries with minimal redundancy among themselves. Note

that, the fact that sometimes the combination of features that work

well individually decreases their classification performance, is a be-

havior that has been observed in feature selection research and linked

to the redundancy of the features.

We then apply the forward sequential feature selection algorithm, a

standard wrapper feature selection method [32], to select combina-

tions of elements from F that are discriminative. This approach tests

the discriminative power of elements with a classifier wrapped in a

cross-validation scheme, and returns sets of discriminative elements

Ei , as we describe below. We use a k-nearest neighbor (KNN) classi-

fier in our work. Note that the feature selection is now more efficient,

as it is only applied to the candidate elements obtained with MRMR.

In more detail, suppose that we have a set of already selected elements

Ei , and the set of remaining elements R = F − Ei . Then, for each

element r j ∈ R, we test the discriminative performance of Ei ∪ {r j }

according to the KNN classifier. We average the results for 10 folds

of cross-validation, i.e., we divide the training set into 9 sets used

for training and then test the performance on the remaining set,

averaging the results for the 10 test sets. We add the r j with the

highest average performance to Ei . The selection starts with an

empty Ei and concludes when no elements can be added to improve

the classification performance. Note that, in our problem setting,

adding an element to the set implies that we consider its entry in the

term vectors of the shapes.
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Fig. 8. Discovery of defining elements. Each row shows the discrimi-

native elements selected at an iteration of the method, for the Children

style. For each iteration, we show two positive elements on the left,

and two negative elements on the right. All the elements together

constitute the set of defining elements of the style.

One interesting aspect of the feature selection is that it selects both

positive and negative discriminative elements. That is, we learn that

certain elements need to be either present or absent from a shape

to characterize a given style. To determine whether an element is

positive or negative, we verify the presence of this element in all

the shapes within the style discriminated by the element. This is

verified by computing a histogram of the entry values in the term

vector corresponding to the element, where we consider only the term

vectors of shapes in the style. Based on this histogram, we can then

determine the type of element, e.g., if the element does not appear

often in shapes of the style, meaning that the bin corresponding to

value 0 is high, then it is a negative discriminative element. Figure 7

shows an example of positive and negative elements.

Defining elements. In the outer loop, we combine the selected dis-

criminative elements, obtained by the repeated application of the

inner loop, into a larger collection of style-defining elements. We

start with an empty set of defining elements, and at each iteration of

the inner loop, we augment this set with the discriminative elements

discovered by the feature selection. We then remove the discovered

elements from the working set, to select additional discriminative

elements in the next iteration. We stop adding more elements when

the classification performance falls below a threshold of 0.9. In this

manner, at the end of the outer loop, we obtain a set that fully charac-

terizes a style. An example of the construction of the sets of defining

elements is shown in Figure 8.

Output. Given input shapes with n styles, the result of the method is a

set of defining elements D = {D1, . . . ,Dn }, one for each style. We

define theDj for a style j as the union of all the sets of discriminative

elements selected for this style, i.e., Dj = E
j
1
∪ . . . ∪ E

j
mj

, wheremj

is the number of sets of discriminative elements selected for style

j. We can interpret a set Dj as the elements that, when present or

(a) Ming (b) European

Fig. 9. Subsets of shapes covering the full set of defining elements

selected for each style. For each shape, we also show the full set of

defining elements that appear on the shape.

Fig. 10. A single style-defining element appearing on multiple shapes

of the Ming style. The element captures shape regions rich in relief

ornaments.

absent of a shape, characterize this shape as belonging to style j. The

sets Dj can then be used for classification or for applications such as

style-aware modeling.

6 RESULTS AND EVALUATION

We evaluate our method for the discovery of style-defining elements

in this section, and show example applications in the next section.

Datasets. In our experiments, we use five sets of shapes organized

by experts into different styles. The sets are: 1) Furniture, with 618

models, 4 styles (Children, European, Japanese, and Ming), and

5 types of content (beds, cabinets, chairs, stools, and tables); 2)

Furniture legs, with 84 models and 3 styles (Cabriole, Tapered, and

Fluted); 3) Buildings, with 89 models and 5 styles (Asian, Baroque,

Byzantine, Gothic, and Russian); 4) Cars, with 85 models and 4

styles (F1, Pickup, Sports, and Truck); and, 5) Drinking vessels, with

84 models, 3 styles (vessels suitable for Chinese liquor, sake, and

wine), and 2 content types (bottles and cups). The sets are composed

of shapes that we collected, with the exception of the buildings that

were made available by Lun et al. [17]. Our dataset includes a similar

variety of categories as previous works, and our furniture set is more

than double the size of the largest set used in the recent works of Liu

et al. [16] and Lun et al. [17].

Statistics. We extract 200 initial elements from each shape. As an

example, for the furniture dataset, this sums up to a set of approxi-

mately 120K initial elements. After applying our method, we obtain

from 5 to 40 defining elements for each style, depending on the size

and variability of the input set. Running our method takes 17 minutes

on the large set of furniture models, and 2 minutes for the small set

of furniture legs, with an unoptimized MATLAB implementation

running on an iMac with a 4 GHz Intel Core i7 processor and 32GB

of DDR3 memory. The candidate selection takes approximately 60%
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(a) Furniture (b) Drinking vessels

(c) Cars (d) Furniture legs

(e) Buildings

Fig. 11. Examples of style-defining elements selected by our method. We show one element per style. Note how the elements capture distinctive

characteristics of each style.

(a) Furniture (c) Cars (b) Drinking vessels (e) Buildings(d) Furniture legs

Fig. 12. Defining element frequency. Each entry (i, j ) of a matrix

shows the average percentage of defining elements of style i that

appear in shapes of style j . We see how the diagonals dominate the

matrices, indicating that a set of defining elements appears mostly in

shapes of its respective style.

of the execution time, with the feature selection taking 40% of the

time. After processing a set, detecting the style-defining elements on

a query shape takes less than 1ms.

Analysis of elements. We first analyze different aspects of the style-

defining elements, and provide visual samples of the results to pro-

vide an overview of the characteristics of the elements. We analyze

mainly positive style-defining elements, since these can be displayed

on the shapes. The negative elements take part in the application of

style classification and style-driven modeling, discussed below.

To provide some insight on the general characteristics of the positive

style-defining elements, we show in Figure 9 the full set of defining

elements selected for two styles. For each style, we show a subset of

three shapes that together display all the elements selected for the

style. In addition, we show all the defining elements that exist on

each individual shape. We see that the elements do not exhaustively

cover the surface of the shapes, but rather appear on key regions that

define the styles, such as tubular structures and relief ornaments in

the Ming style. We note that, since our elements are patches of fixed

size, they do not capture these key regions in their entirety, but are

located arbitrarily over these regions.

We also remark that the elements are not restricted to each single

shape, but are in correspondence across many shapes of the style,

forming a collective characteristic of the style. To illustrate this point,

Figure 10 shows an example of the same style-defining element ap-

pearing across multiple shapes of the Ming style. Therefore, each

element in Figure 9 may correspond to more than one defining el-

ement, since it may be in correspondence with different defining

elements on other shapes.

To analyze the occurrence of elements across multiple shapes in a

quantitative manner, we analyze their frequently-occurring property

for each category of shapes. For each shape, we compute the percent-

age of its defining elements that belong to each style in the set. We

then display in a matrix cell (i, j ), the average of the percentages of

elements of style i that appear on all shapes of style j. The diagonals

of the matrices in Figure 12 demonstrate that in a shape of style i,

around 20% to 40% of its patches are on average defining elements of

style i, while each other style accounts for at most 10% of elements.

Thus, the matrices confirm that the defining elements of a shape are

mostly restricted to the shape’s style.

Another important property of the elements selected by our method

is that they capture distinctive characteristics of the styles. This is

demonstrated in Figure 11, which shows examples of style-defining

elements selected for shapes of all styles in our datasets. Note how

these elements capture important characteristics that define the styles,

such as sharp edges for Japanese furniture, tubular structures for

Ming furniture, relief ornaments for European furniture and furniture

legs, defining parts such as seats and wheels for cars, and specific

substructures for the roofs of buildings.

Quantitative evaluation. To perform a quantitative evaluation of our

method, the most direct approach is to collect a ground-truth of

defining elements from human subjects, and compare our results to

such a user-provided data. However, manually creating a ground-

truth is a highly complex problem due to the large number of shapes

that need to be analyzed simultaneously. For example, our method

finds on average 20 elements defining a style. It would be difficult for

users to search for such large sets across multiple shapes and styles,

even if the initial elements are already provided to the users. This
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Ours:

Users:

...

...

Fig. 13. Examples of feature weights that define the similarity measure

of each element shown in red. The top row shows the elements discov-

ered by our method, while the bottom row shows elements selected

by the users.

is because the defining elements need to be consistent and common

across styles. Therefore, for the evaluation, we opt to collect a ground-

truth for a smaller, more tractable subset of shapes. In addition,

we indirectly evaluate the correctness of the detected style-defining

elements through shape classification tasks. We perform this second

evaluation on the entire dataset without subsampling. These two

evaluations are described as follows.

Comparison to ground-truth. We asked human subjects to create a

ground-truth of defining elements for subsets sampled from each of

our sets. Each subset contains 3 styles with 10 shapes per style, total-

ing 30 shapes. We randomly sampled shapes for each category, while

ensuring that the selected subsets cover the diverse shape variations

and types of content of the original sets. The subjects were computer

science majors not involved in our project. We provided an interface

where they could select defining elements from our initial elements.

We show a screenshot of the interface in the supplementary material.

Thus, the initial elements selected by the users are also patches of

regular radius. This facilitates the comparison to the elements se-

lected by our method and avoids considerable work from the users

to draw irregular patches. We focus the evaluation on whether the

users select the same regions of the shapes as our method, reflected

by the centers of the elements. Each user was asked to select the 5

most defining elements for each style. Since we had 5 sets, one for

each of the 5 object categories, and 3 styles, we obtained 75 elements

per user. With 31 participants, we obtained a total of 2,325 elements.

We compare this ground-truth with the elements discovered by our

method on the same subsets of shapes. One challenge is that we

extract around 200 initial elements for each shape. Since some of

them are geometrically similar, it is unlikely that two users as well

as our method will select exactly the same elements. Nevertheless,

if two elements are selected in a similar region of a shape and have

similar characteristics, they should be considered as the same element,

e.g., any elements selected on the smooth portions of a stool’s leg

should be considered to be equivalent. Here, we could ask users to

rate the element similarity. However, this is unpractical as hundreds

of elements are involved. Thus, we use the framework of comparing

elements with their individual similarity measures.

We train the measure for each defining element that we discovered,

and also for each element selected by the users, using the refinement

method introduced in Section 4. The general idea is illustrated in

Figure 13: each element from either of the two sets has an associated

similarity measure, represented by a set of feature weights. For each

Fig. 14. Agreement between the defining elements selected by our

method and a ground-truth created by human subjects, in terms of

precision and recall. Note how the recall is at least 80% for all datasets,

and the precision is 100%.

set, we train the similarity of each element separately, using the

element’s nearest neighbors in the initial set. Note that we do not

use any information discovered by our method to train the similarity

measures of user-selected elements.

The problem of comparing elements is then reduced to comparing two

sets, according to the individual similarity measures of the elements.

For this task, we compute the agreement between the results of our

method and the ground-truth in terms of recall and precision. Let Dд

be the defining elements in the ground-truth, and Dr the elements

discovered by our method. We define

Recall =
∑

eд ∈Dд

Similar(Dr , eд )/|Dд |, (4)

where Similar(Dr , eд ) is 1 if there exists an er ∈ Dr such that

Ser (eд ) > τp , or 0 otherwise, with τp = −1 as explained in Section 5.

Note that, here, we use the similarity measures trained for the ele-

ments found by our method. Hence, recall corresponds to all of the

elements in the ground-truth that also appear in our results. Similarly,

we define

Precision =
∑

er ∈Dr

Similar(Dд , er )/|Dr |, (5)

which corresponds to all the elements in our results that are deemed

to be “correct”, i.e., appear in the ground-truth, as recognized by the

similarity measures trained for each ground-truth element. Note that

we only compare positive elements discovered by our method, since

users were instructed to only select positive elements.

We plot the precision and recall in Figure 14, for each category.

We observe that, while our method recovers 80% or more of the

elements selected by users, the method does not select any elements

that were not chosen by users (precision is close to 100%). Thus,

we conclude that, although the users selected some elements not

found by our method, the elements discovered by our method are in

close agreement with what users would select as defining elements.

Moreover, in Figure 15, we show a few examples of the elements

that users selected which were not found by our method. We observe

that some of these elements are unique to only a few shapes, such as

the element on the boundary between two parts of the wine glass. In

contrast, our method selects elements on specific shape parts, such

as the patches on the spouts of the drinking vessels in Figure 11(b),

since these appear frequently across the set.
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 BuildingsCars Drinking vessels

Fig. 15. Elements chosen by humans to compose the ground-truth,

which were not selected by our method.

Similarity measures. Since the comparison to the ground-truth is

computed with the similarity measure of each individual element, to

further justify the use of the measures, we performed a second user

study to confirm that the learned measures provide a reasonable as-

sessment of stylistic element similarity. We sampled pairs of elements

that are deemed either similar or dissimilar by the learned measures.

We then showed users the same pairs of elements and asked them to

assess whether the elements are similar or dissimilar in the context

of a given style. To illustrate the context, a few shapes of the same

style were also shown to the user. The users could also select a third

option to indicate that they were unsure about the similarity. Finally,

we computed the agreement between users and the learned measures.

We use the same set of shapes as in the previous user study (3 styles

for each of the 5 categories). We sampled 10 pairs of elements per

style, totaling 150 pairs to evaluate, where half of the pairs were

labeled as similar. About half of the pairs involve elements selected

by our method, while the other half involve elements defined by

the user ground-truth. We then asked 25 users to participate in the

study, and collected 60 answers from each user, obtaining 1,500

answers in total. The reason for the larger number of observations

than pairs is that we asked 10 different users to classify each pair,

in order to compute more reliable statistics. In this study, 18 users

had a computer science background, while the remaining 7 users had

various other backgrounds. A screenshot of the interface used for the

user study is shown in the supplementary material.

We then compute the percentage of users that agree with the learned

measures. We first eliminate inconsistent pairs (about 15% of all

pairs), where a pair is said to be inconsistent if less than half of the

users agree with whether the pair is similar or not. This situation can

occur since each user could also select an “unsure” response. We

then define a pair as in agreement with the learned measure, if the

majority of users agree with the measure. With this calculation, we

find that there is 85.5% agreement among the learned measures and

the users’ similarity, for all the sampled pairs.

To demonstrate that learning the similarity metrics per element is

more effective than a simple baseline, we perform the same agree-

ment calculation when using the correlation between feature vectors

as a baseline element similarity distance. In this case, we need to

select a threshold that indicates what correlation values imply that

two elements are similar to each other. We show the result of this ex-

periment in Figure 16 when choosing different threshold values. We

observe that the optimal threshold is around 0.2, giving an agreement

of 80%, which is still lower than the agreement of 85.5% provided

by our approach of learning the similarity per element.

Fig. 16. Agreement between the users’ similarity and a baseline sim-

ilarity measure (the correlation distance between feature vectors of

elements). Two elements are deemed similar according to a threshold

on the correlation. We evaluate different thresholds (the x -axis). Note

that the threshold 0.2 yields the maximal agreement of 80.0%, which is

still lower than the agreement we obtain by using the SVM detectors

learned for each element (85.5%).

Style classification. We also evaluate our method by verifying the

accuracy of classifying shapes into the different styles, according to

our defining elements. Since the defining elements for the styles are

different from each other, the term vectors of the shapes for a style

are also different. Thus, to classify shapes into different styles, we set

up a binary KNN classifier for each style. Given a specific style of

one dataset, we take all the shapes and represent them with the term

vectors of defining elements for the style, so that we have positive and

negative examples for training. Next, given an unknown shape, we

represent it with a term vector for each style, by detecting the defining

elements corresponding to each style, as explained in Section 5.

Finally, by applying each classifier, we can estimate whether the

shape belongs to a style or not.

As a result of the classification, a shape may get assigned to multiple

labels. Thus, we verify the accuracy of the classification of a shape

into the styles as follows. If a shape is assigned to its ground-truth

style label, we count a success to this label. However, if the shape is

also assigned to labels other than its own by the classifiers of different

styles, we count errors for those labels. Moreover, to perform the

evaluation on each dataset, we run a classification experiment with

10-fold cross-validation. That is, we randomly divide the input shapes

into 10 folds of equal size. We learn the sets of defining elements

from 9 folds used for training, and evaluate the classification accuracy

on the remaining fold. We then average the accuracy for the 10 folds

and all the style labels in a set.

We plot the results of this experiment for all datasets in Figure 17.

The accuracy of classification is shown in relation to the number

of discriminative sets that we select to compose the style-defining

elements (x-axis). We see that the average accuracy is over 88%,

when three sets are included. As expected, a few sets of discriminative

elements are sufficient for classification, although having a more

complete set of defining elements slightly increases the accuracy.

Evaluation of algorithm components and settings. To evaluate the

effectiveness of the different components selected for our method,

and to demonstrate that our method is robust under diverse settings,

we compare our algorithm components to reasonable alternative

approaches. We evaluate the first and second steps of our method,

the candidate and feature selection, respectively. We also evaluate
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Fig. 17. Average accuracies of style classification in relation to the

number of discriminative sets included in the final set of defining

elements. We show an average for all the styles in each dataset.

the construction of the initial elements, our shape representation, the

effect that the size of the training set has on the results, and analyze

the weights learned for the per-element similarity measures. For these

components, we only provide a short summary here, and give more

details and evaluation plots in the supplementary material.

Candidate selection. We evaluate the first step of our method based

on peak analysis by comparing it to two alternative approaches that

could be used for candidate selection. Paris denotes a method where

we select candidate elements with a sampling and filtering approach

inspired by the work of Doersch et al. [5]. In short, we select an

element if its k-nearest neighbors comprise only a few style labels

and cover as many shapes as possible from the dominating styles.

This implies that the element is weakly discriminative of a style.

We provide more details on this method in Appendix A. K-means

denotes a baseline method where we cluster the initial elements

with k-means into 100 clusters. We then take the cluster centers as

candidate elements. We also explore three different settings of our

method. In Ours Auto, we select the candidate elements automatically,

according to the density peak clustering [24]; in Ours Paris, we apply

the filtering of the Paris method to the density peaks detected by our

method; finally, in Ours K-means, we run our method requesting the

same number of candidates as chosen for K-means (100 elements).

Figure 18 presents the result of this comparison. We observe that our

method with automatic selection of peaks provides the best classi-

fication accuracy. We also see that our method with other settings

is comparable for most sets. However, the filtering and k-means

approaches lead to inferior results in some of the sets.

Feature selection. We evaluate the second step of our method by com-

paring it to two alternative approaches. MultiSVM denotes a method

that uses a multi-label SVM classifier. Note that this method allows

us to classify shapes into different styles, and thus we can compare

its classification accuracy to our method. However, the multi-label

classifier does not perform feature selection for each label, and thus

is not able to extract corresponding defining elements. L1-reg de-

notes an approach based on L1-regularized logistic regression [25].

We perform the L1 minimization on each style. This method can

be used for feature selection by retrieving the elements whose op-

timized weights are non-zero. We also evaluate the second step of

Fig. 18. Evaluation of different methods for selecting candidate ele-

ments. We observe that our method, denoted Ours Auto, leads to the

best classification results. Please refer to the text for further details on

the other methods.

Fig. 19. Evaluation of different feature selection algorithms for the

second step of our method. Note the better accuracy of our method

when combined with a KNN classifier.

our method with different settings, where we substitute the classifier

in our feature selection wrapper with three options: we consider a

k-nearest neighbor classifier (denoted Ours KNN), a classifier based

on discriminant linear analysis (Ours LDA), and an SVM classifier

(Ours SVM).

Figure 19 shows the result of this comparison. We observe that our

method leads to the best classification accuracies, especially when

combined with a KNN classifier, although other classifiers and the

L1-reg approach are comparable on several of the sets. This is rea-

sonable since all of the methods start from the same set of initial

elements, and any effective feature selection method should lead to

satisfactory results in this setting. However, it is worth mentioning

that the comparison is in terms of shape style classification. When

localized features are required, the L1-reg approach provides discrim-

inative elements, but does not necessarily build a more complete set

of defining elements. For all the other experiments in the paper, our

method is used with the KNN classifier.

For the following evaluations, we only provide a summary in the

paper. More details are provided in the supplementary material.

Geodesic radius of elements. We evaluate the effect of different

values of the main parameter used in the element construction, the

geodesic radius τ of the patches, on the accuracy of classification. We
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Fig. 20. Graphs reflecting how shapes from the furniture set fit within

two selected styles. We compare our method (left) with L1-reg (right).

Each marker is a shape, and the larger the values along an axis,

the stronger the shape’s relationship to the corresponding style. We

observe how the grouping given by our method leads to a clearer

separation between the different styles.

observe that a radius of 0.09 leads to the overall best results, although

different radii do not affect the accuracy by more than 5%. Thus, we

use 0.09 in all of the other experiments in the paper.

Shape representations. We test two different representations to en-

code shapes in our method. We compare our bag-of-words encoding

using element frequency with the encoding used by Arietta et al. [1],

based on the scores returned by the per-element similarity measures.

Although the two approaches are comparable for three sets, our

representation leads to the best overall results.

Dataset size. We study how the size of the input dataset influences the

classification accuracy, since the learning of the element similarity

changes based on the input data provided. In an experiment with

cross-validation, we observe that the classification accuracy is over

85% for training sets containing 50% of the shapes in the dataset,

which corresponds to approximately 300 shapes for the larger set

of furniture, and 40 shapes for the smaller set of drinking vessels.

We also observe that furniture require the most training data, while

cars have a higher accuracy with a smaller number of training shapes.

From this result, we speculate that the styles of cars are more distinc-

tive and easily distinguished from each other, as appears to be the

case from a visual analysis of the set.

Feature weights. Regarding the learning aspects of the method, we

also investigate how the different features used to represent the el-

ements are weighted by the similarity measures learned for each

element. We observe that all of the weights are non-zero, implying

that each feature is relevant for at least one of the datasets.

7 APPLICATIONS

We first present an application that uses the term vectors of the

shapes for global style analysis. We then show several applications

that benefit from the localization of elements.

Stylistic score. In addition to classification, we can use the represen-

tation of a shape to analyze how strongly the shape fits into a specific

style. We retrieve the term vector of a shape relative to a specific

style and count how many defining elements appear in the shape,

i.e., the sum of all the word frequencies. We use the resulting sum

(a) Style-revealing viewpoints

(b) Saliency-based viewpoints

Fig. 21. Style-revealing view selection based on our defining elements

in (a), compared to view selection with saliency in (b). The scalar field

goes from white to red and denotes the level of stylistic relevance

of each point, in (a), or saliency, in (b). We observe how the views

selected by our method are more informative and do not occlude the

stylistic shape regions.

as a score that allows us to determine how strongly the shape fits

into the given style, based on the defining elements that we detected.

In Figure 20, we plot these scores on a graph for the shapes in the

furniture set and two selected styles. We see how the European furni-

ture shapes appear on the right side of the graph, implying that they

fit the most within the European style. Similarly, we observe how

the Ming furniture shapes occupy the top of the graph. The shapes

of the Children and Japanese furniture styles have lower scores for

the two styles. Compared to the L1-reg method, our grouping gives

a clearer separation between the different styles, demonstrating the

effectiveness of using the defining elements. Note that this type of

embedding cannot be achieved with previous work, as it is different

from a traditional embedding reflecting shape similarity.

Style-revealing view selection. The defining elements can also be

used to select the pose of a shape that best reveals its style, i.e., the

pose that clearly demonstrates that the shape possesses a given style.

For this application, we first derive a style-revealing scalar field for a

shape from the defining elements detected for its style. As explained

in Section 4, each shape is represented as a set of points. Thus, given

a style-defining element, we place a vote on all the shape points

covered by this element. After voting for all the positive defining

elements detected on the shape, we normalize the votes to the range

[0, 1], to obtain a scalar field where points with values closer to 1 are

more relevant to the style of the shape.

To select the style-revealing view of the shape, we place the shape at

its center of mass and uniformly sample rotations in 3D space. We

then choose the rotation that maximizes the sum of the scalar field for

all the points that appear on the projected image of the shape, accord-

ing to a fixed camera. In Figure 21(a), we show examples of views

selected for different shapes, with their style-revaling scalar fields.

In (b), we show a comparison to the method of Shtrom et al. [28],

which selects viewpoints by maximizing saliency. We observe that

the views selected by our method ensure that regions of the shapes

that are important for defining their styles are visible, such as the

roofs of buildings and finishings of the furniture.

ACM Transactions on Graphics, Vol. XX, No. XX, Article XX. Publication date: March 2017.



XX:14 • Hu, R. et al

Fig. 22. Style-aware sampling. For each shape, we show our style-

revealing scalar field on the left and the sampling on the right.

(a) Input model (b) Missing elements and suggestions (c) Final model

Fig. 23. Style-driven modeling enabled by our defining elements.

Given the shape in (a), our system suggests positive style-defining

elements that can be added to the shape to enhance its style, as seen

in (b). The suggested elements are shown on their source shapes. The

system also locates negative defining elements on the input shape

that can be removed to improve its style. An artist can then choose to

add or remove elements to create a shape with a more pronounced

style, shown in (c). We plot the style-revealing scalar fields on the input

and final shapes to show that the style of the shape has become more

distinct after the modifications.

Style-aware sampling. Using the scalar field defined for the applica-

tion of view selection, we can also perform style-aware sampling,

to place more samples on regions that are relevant to the style of a

shape. This can be useful for applications such as style-aware fea-

ture extraction, and style-aware simplification, where we decimate a

mesh while avoiding over-simplifying regions that contain a higher

density of samples that are important for preserving the style of the

shape. We perform the sampling with the method of Corsini et al. [4],

where we set the sampling importance of the points according to our

style-revealing scalar field. Figure 22 presents a few examples of

samplings, where we sampled 2,000 points per shape. We note how

the samples follow the scalar field closely. As a consequence, the

sample density is also higher near style-defining elements.

Style-driven modeling. If the style of a shape is not pronounced, our

defining elements can guide an artist in giving a more prominent style

to the shape. We created a system based on the defining elements to

facilitate modeling in such a context, which is illustrated in Figure 23.

Given an input shape and a reference style, the system suggests

positive defining elements that can be added to the shape to enhance

its style. The suggested elements are shown on their source shapes,

to provide a context to the artist of where to add the elements to

the shape. The system also locates and suggests elements on the

input shape that should be removed to enhance the style, which

correspond to negative defining elements of the style. By following

these suggestions, an artist can transfer geometric patches to the

Fig. 24. Style-driven modeling results. In the top row, we show how an

artist transformed a Japanese chair into a Ming chair, with the style-

elements suggested by our system shown in the box in the middle. In

the remaining rows, we see additional modeling examples. For each

pair, an artist added or removed defining elements to the shape on the

left to obtain the shape with new style on the right. Removed elements

are circled in red.

input shape and add or remove parts, to make the style of shapes

more pronounced, as shown with the examples in Figure 24. For

example, a bed is made to look more European by adding ornaments

to its frame, or a stool is made more Children-like by removing the

connecting bars between legs, since they are the locations of negative

elements of the style. Thus, while the artist may start with a vague

notion for modeling such as “I want to make this Japanese chair look

more like a Ming chair”, our system explicitly presents the what and

where of the style to the artist, providing valuable visual guidance

for modeling.

8 CONCLUSIONS AND FUTURE WORK

In this work, we present a method for discovering defining elements

that characterize a given style, where the elements are co-located

across the shapes of the style. The style-defining elements provide a

more complete characterization than simply a set of discriminative

elements, and include positive and negative elements of the style. We

demonstrate with a qualitative and quantitative evaluation that our

method is effective in discovering these elements, while the elements

themselves reveal features of the shapes that are relevant to the styles.

We also present examples of style-aware applications that benefit

from the relevance and localization of the elements.

Limitations. The main technical limitation of our work is that we

prescribe an initial set of elements from where our method selects the

defining elements. The prescribed elements are not universal, since

the meaning of “style” can be vague. For example, styles that are

defined by relative part proportions [33] cannot be captured by our set

of elements. In more general terms, our style elements are isotropic
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and of a local nature, based mainly on the geometry of shapes. We

focus on local elements, since several authors characterize the style

of works of art based on local patterns, such as the categorization

of furniture based mainly on the type of feet and finials that appear

on the shapes [21]. Thus, our analysis does not consider stylistic

features that are anisotropic, structural, and more global, which could

complement the description of certain shape styles.

Moreover, one criterion that we use for the selection of defining

elements is that they should appear frequently across the shapes

of a style. Thus, our method may miss known defining elements,

if they only appear seldom in every shape, such as the spires of

Gothic cathedrals. In addition, a limitation of our evaluation is that

we compared our results to a relatively small ground-truth created by

humans, which is composed of 150 shapes. To assess our method in

large-scale scenarios, we may need considerably more user input to

assemble a large collection of ground-truth dataset.

Future work. We would like to extend our method to analyze and

localize shape categorizations beyond style. One such possibility is

to extract elements that define both style and content. In the sup-

plementary material, we show a few preliminary results towards

this direction, by taking style-content tables as input. Applying our

method to other settings may also require extending the types of

elements that we use, in order to capture additional geometric and

structural properties of the shapes that could be relevant to the spe-

cific categorization studied.

Moreover, the geometric patches that we currently use can be ex-

tended in various manners. Some of the defining elements that our

method selects look visually similar to each other, although their

corresponding weight vectors wi are different; we present such an

example in the supplementary material. This implies that when their

similarity to other elements is being computed, the measure gives

relevance to different types of features. Thus, we could explore these

low-level feature differences to infer what kinds of geometric charac-

teristics are being emphasized in each element. We could also learn

a more advanced model for the detection of elements. For example,

by learning the valid degrees of variation of each defining element,

we could define a general model of elements that captures how they

vary across diverse shapes. We would also like to consider develop-

ing anisotropic patch elements, and elements that capture structural

properties of the shapes, such as part composition and symmetry.

Due to the need for domain knowledge in identifying many of the

studied shape styles, e.g., Japanese furniture, cabriole table legs,

or Baroque architecture, we relied on expert annotations to form

a ground-truth style grouping for our analysis task. Some recent

works on style analysis, e.g., [16, 17], utilized crowdsourcing instead,

where non-experts were asked to rank style similarities or compati-

bilities over triplets of shapes. Crowdsourced data should generally

be expected to be noise-prone, and even more so when collected

from a large crowd of non-experts on style grouping over moderately

large shape collections. On the other hand, crowdsourcing can easily

provide a large number of annotations, which can then be filtered for

consistency. Thus, it would be interesting, although not straightfor-

ward, to explore how to turn a set of style-ranked triplets into a style

grouping which would serve as input to our style analysis.

One final observation is that the defining elements of a style that we

select with our method are not intrinsic to the style, but are defined

relative to other styles (the positive and negative elements). Thus,

it may be interesting to explore the question of whether defining

elements can be defined in an intrinsic manner, and extracted from a

set of example shapes with a single style.
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A SAMPLING AND FILTERING OF ELEMENTS

In this section, we describe the filtering approach inspired by the work

of Doersch et al. [5] that can be used as an alternative for the selection

of candidate elements. The goal of this approach is to select elements

that weakly discriminate the styles. Thus, we seek elements whose

neighborhoods are dominated by only a few style labels and at the

same time cover as many shapes as possible. Towards this goal, we

randomly sample 1,000 elements I ′ from the set of initial elements I.

Given a sampled element, we select its k-nearest neighbors from the

full set of elements I, according to the normalized correlation. We

then analyze this neighborhood to compute a histogram HN of style

labels of the neighbors, and another histogram HS of shape coverage

by the neighbors. Specifically, HS records the percentage of shapes

from each style that is covered by the elements of the neighborhood.

We then rank the elements based on E (HN ) · E (HS ), where E is the

entropy of the histogram. The lower this product is, the higher the

element is ranked. Finally, we pick the top ranked 100 elements to

form C, avoiding the duplication of any choice. Two elements are

considered to be duplicated if their neighborhoods overlap in more

than 30%, where the overlap of two neighborhoods is defined as the

percentage of elements that appear in both neighborhoods. Note that,

when we combine our method with this filtering, we replace I ′ with

the density peaks, while the rest of the method remains the same.
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