
Procedural 2D Cumulus Clouds Using Snaxels

by

Ramin Modarresiyazdi, B.Sc.

A thesis submitted to the

Faculty of Graduate and Postdoctoral Affairs

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Ottawa-Carleton Institute for Computer Science

The School of Computer Science

Carleton University

Ottawa, Ontario

April, 2017

 Copyright

Ramin Modarresiyazdi, 2017

The undersigned hereby recommends to the

Faculty of Graduate and Postdoctoral Affairs

acceptance of the thesis

Procedural 2D Cumulus Clouds Using Snaxels

submitted by Ramin Modarresiyazdi, B.Sc.

in partial fulfillment of the requirements for the degree of

Master of Computer Science

Professor David Mould, Thesis Supervisor

Professor Oliver van Kaick,
School of Computer Science

Professor Jochen Lang,
School of Electrical Engineering and Computer Science

Professor Michiel Smid, Chair,
School of Computer Science

Ottawa-Carleton Institute for Computer Science

The School of Computer Science

Carleton University

April, 2017

ii

Abstract

This thesis develops a procedural modeling algorithm to model cumulus clouds or

objects with similar shapes and surfaces in 2 dimensions. Procedural modeling of

clouds has been extensively studied and researched in computer graphics. Most of

the literature follows physical characteristics of clouds and tries to model them using

physically-inspired simulations. Cumulus clouds, volcanic ash clouds and similar nat-

urally shaped bodies come in many different shapes and sizes, yet the surfaces share

similarities and possess high irregularities in details which makes them difficult to

model using conventional modeling techniques. We propose a framework for model-

ing such surfaces and shapes with minimal user intervention. Our approach uses an

active contour model which propagates through a tessellation. In this thesis, we will

describe our technique for modeling cloud looking structures and we will present our

results of our algorithm and show case a simple user interactive framework as well.

iii

Acknowledgments

It cannot be argued with that the most influential person in my graduate studies

at Carleton University has been my supervisor, Dr. David Mould. I would like to

show my greatest gratitude to him. I am especially grateful to his guidance, advice

and patience. His kindness and knowledge has left me word-less. I cannot hope to

have anyone better to be my supervisor.

I would like to thank the thesis committee for reviewing my work and giving me

valuable suggestions. I must also express my appreciation to my colleagues and

friends in GIGL lab and the School of Computer Science. Also I would like to thank

Carleton University and GIGL lab for their persistent financial support. And finally,

I would like to thank those who shaped me into who I am. Without them and their

support the writing of this thesis would not have been possible.

We used many images from Flickr under a Creative Commons license. Thanks to

the numerous photographers who provided the material.

iv

Table of Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Motivation . 2

1.3 Snaxels . 3

1.4 Statement of Contribution . 4

1.5 Overview . 4

2 Background 6

2.1 Procedural Modeling of Natural Irregular Objects 6

2.1.1 Clouds . 6

2.1.2 Rocks . 7

2.1.3 Terrain . 8

2.1.4 Cities . 10

2.2 Sketch-Based Modeling . 10

2.3 Noise . 11

2.3.1 Perlin Noise . 11

2.3.2 Gabor Noise . 11

2.3.3 Worley Noise . 11

v

2.3.4 Stochastic Modeling . 12

2.4 Curve Synthesis . 12

3 Algorithm 14

3.1 Introduction . 14

3.2 Snaxels . 15

3.2.1 Birth . 16

3.2.2 Merge . 18

3.2.3 Growth . 20

3.2.4 Death . 21

3.2.5 Stop . 21

3.3 Curves . 21

3.3.1 Updating Curves . 22

3.4 Speed Scheme . 26

3.4.1 Base Speed Scheme . 28

3.4.2 Circular Speed-Assigning Scheme 32

3.5 Growth Strategies . 36

3.5.1 Length-Limits Table . 36

3.5.2 Clusters . 40

3.5.3 Sketch-based . 42

4 Results & Discussion 44

5 Future Work 61

5.1 Snaxels in 3D: Mesh Growth Using Snaxels 62

6 Conclusion 64

List of References 65

Appendix A Snaxels in 3D: Mesh Growth Using Snaxels 70

A.1 Transition . 70

A.2 Case Based Approach . 73

A.3 Hole Patching Approach . 76

vi

List of Tables

3.1 Parameters used in the simulations 32

3.2 Parameters used in the simulations 35

3.3 Example of a Weight-Limits Table . 37

3.4 Modified version of Table 3.3 . 39

3.5 Parameters used in the simulations 39

3.6 Parameters used in the simulations. Ns stands for number of snaxels

on the snake. Nv stands for number of tessellation’s vertices. 42

3.7 The Weight-Limits Table used in figure 3.23 42

3.8 Parameters used in the simulations. Ns stands for number of snaxels

on the snake. Nv stands for number of tessellation’s vertices. 43

4.1 Length-limits table used in our results 48

4.2 Parameters used in the simulations. nc stands for number of clusters. 57

4.3 One of the length-limits table used in our results 58

4.4 One of the length-limits table used in our results 58

4.5 Length-limits table used in our results 58

4.6 Length-limits table used in our results 59

4.7 Length-limits table used in our results 59

4.8 Length-limits table used in our results 59

4.9 Length-limits table used in our results 60

vii

List of Figures

1.1 Example of a natural phenomenon. Eyjafjallajökull volcanic eruption

in Iceland. 2

1.2 Snaxels moving on a tessellation;. Red lines indicate segments of the

snake. Yellow vertices are snaxels and the blue ones are tessellation’s

vertices. 4

3.1 The snake propagating through the tessellation. Dashed lines indicate

the snake. Black vertices are snaxels and blue ones are tessellation’s

vertices. 15

3.2 Before and after a birth event. (a) Snaxel P is about to arrive at its

destination. (b) After snaxel P arrives, it is deleted and the birth event

takes place which results in new snaxels being born and added to the

snake. 17

3.3 Before and after a merge event. (a) Snaxels m1 and m2 are about

to merge with one another. (b) The snaxels are deleted and their

neighbors connected to one another. 19

3.4 A snaxel with both of its connections on a single triangle. Note that

this situation is impossible. 20

3.5 Types of connections between a snaxel and its neighbors. (a) Snaxels

S has each of its connections on a separate triangle. (b) Snaxels S has

one of its connections on the edge it is growing on. 20

3.6 Example of a curve. Snaxels S0 to Sn form a curve. 22

3.7 Example of breaking of a curve. The curve designated by snaxels S0 to

Sn, is divided into to new curves; one from S0 to Si and another from

Sj to Sn. 23

3.8 Before and after a merge event of two non-connected snaxels. (a)

Snaxels m1 and m2 are about to merge with one another. (b) Their

merge results in part of each of the curves they belong to being removed. 24

viii

3.9 Example of merging of a Curve with another. (a) A Small curve start-

ing from snaxel C to D has reached the minimum allowed length. (b)

The curve has merged with its neighboring curve starting from A to

B, thus expanding the neighboring curve to expand its range to A to D. 25

3.10 A Volcanic ash-cloud. 27

3.11 A result of linear interpolation over each curve. The linear interpola-

tion is computed over the curve by setting the middle of the curve as

the maximum input velocity and the corners at zero. Note that the in-

ner contours are for illustrating and visualizing the growth process and

that different curves are visualized with different colors for simplification. 28

3.12 Curve ‘B’ is joint to curves ‘A’ and ‘C’ at snaxels ‘jBA’ and ‘jBC ’

respectively. 29

3.13 Result of computing each snaxels’ speeds by adding a basic speed to

the linear interpolation of the snaxels’ locations in the curve. 31

3.14 Result of controlling the base speed through an effect coefficient. . . . 32

3.15 Comparison of Circular scheme method and linear interpolation over

the curves. Both results were generated with the same values for each

parameter shown in Table 3.2. 33

3.16 Circular Speed-Assigning Scheme Example. The velocity of snaxel ‘s’

on the curve is set to the length of the vector ‘ ~sx’. 34

3.17 Example of an arbitrary shape with occlusions. The occlusions pro-

hibits the method to be able to assign a speed to the snaxel ‘s’. . . . 35

3.18 Example of a cumulus cloud’s surface 37

3.19 A result obtained by controlling the curves’ length-limits through Table

3.3. The values for each parameter are shown in Table 3.5. 38

3.20 A result obtained by controlling the curves’ length-limits through Table

3.4. The values for each parameter is shown in Table 3.5. 39

3.21 Examples of Clouds’ Structures . 40

3.22 A result obtained growing 2 clusters following Table 3.3. The horizontal

line at the bottom of the image indicates that the growth has reached

the boundaries of the screen. In our implementation, the snaxels are

stopped when they reach the boundaries of the screen. The values for

each parameter is shown in Table 3.6. 41

ix

3.23 User attempt to model a mushroom cloud. Left shows the result and

the initial shape drawn by the user. Right shows the final result. The

process was stopped by the user. The values for each parameter is

shown in Table 3.8. 43

4.1 (a) Eyjafjallajökull volcanic eruption in Iceland. (b) One of our results.

(c) A 2 dimensional silhouette extracted from the image. 45

4.2 Comparison between our results and real world cumulus clouds and

volcanic ash-clouds. 47

4.4 A ’neck’ feature in one of our results 49

4.3 Results obtained through same settings with exception in number of

clusters From left to right column, 2,3 and 4 clusters were used. Table

4.1 was used for length limit manipulations. 50

4.5 Result obtained by increasing the number of clusters 51

4.6 A result with high number of clusters 51

4.7 Results obtained by reducing the final row of the length-limit used

shown in Table 4.1 to 25. Figure 4.7(b) is the same result as the one

shown in Figure 4.2(e). 52

4.8 Magnifying details on the result in Figure 4.2(e) 53

4.9 Comparison of clusters’ locations influence 54

4.10 Comparison between our results and previous works. (b) A result from

Bouthors and Neyret [6]. (d) A result from Neyret [43]. (f) A result

from Trembilski and Broßler [63]. 56

5.1 Example of a coral reef; Elkhorn coral near Vega Baja, Puerto Rico. . 62

A.1 Different types of connections between snaxels inside tetrahedras. The

dashed edges indicate that they are occluded. 72

A.2 Before and after a birth event on a mesh. The mesh before the birth

event (a), the parent is removed and the children have formed a cap

(b). Note that only a part of the mesh is visualized. 73

A.3 Before a merge event. The color green indicates the outside surface of

the mesh and the color red indicates the inside surface of the mesh. . 74

A.4 Before and after a merge event inside a tetra 75

A.5 Example of a re-stitching problem . 75

x

A.6 Two different scenarios for a merge event. The color green indicates

the outside surface of the mesh and the color red indicates the inside

surface of the mesh. Merging snaxels are illustrated by yellow squares. 76

A.7 Two different types of holes. The color green indicates the outside

surface of the mesh and the color red indicates the inside surface of the

mesh. 77

A.8 Stitched holes with a patch. 78

xi

Chapter 1

Introduction

While manual modeling has the power of flexibility, it can also be tedious when it

comes to highly irregular, asymmetrical and natural looking objects and phenomena.

Automatic processes can make it much easier to generate irregular objects. How-

ever, automatic processes may not capture the details and specific features that a

user wishes the ending results to have, Interactive modeling can allow the user to

manipulate the modeling process as it is happening. This way the result will be more

satisfactory and tailored to the user’s needs. Interactive modeling with automatic

processes can help procedural modeling of irregular objects by providing control over

an automated process.

1.1 Problem Statement

Most work on procedural modeling of clouds renders them as density fields. Al-

though density fields can obtain realistic results, a simplified representation would

suffice to produce the more opaque models such as cumulus clouds or volcanic ash-

clouds. Although clouds are essentially volume densities, some of them appear to be

opaque. A simplified approach to modeling such types of clouds may be more suit-

able due to the fact that only the outside facade of opaque clouds is visible, meaning

that light does not penetrate them deeply and therefore, they appear opaque at a

distance. Opaque clouds are particularly hard to model because of their intricate

details. Such details are caused by physical processes. Computer simulations are

used by researchers to try to mimic these processes. However, simulations based on

physical processes can be costly and complicated.

1

2

Modeling clouds as opaque objects is difficult due to the complexity of the cloud’s

surface. Since the dynamic processes inside clouds cause certain regularities and

repeated patterns on the surface in the macro scale, more customized algorithms

are needed in order to model these surfaces. The problem we face is procedurally

modeling cumulus clouds or volcanic ash-clouds as opaque objects in 2 dimensions.

This can be broken down into modeling their arbitrary complex shapes and capturing

their boundary details.

1.2 Motivation

Manually modeling complex irregular natural surfaces is tedious. Figure 1.1 shows

an example of such surfaces. These surfaces possess a lot of details which are hard to

capture by hand. The solid appearance of objects such as cumulus clouds motivated

us to treat them as just a surface or boundary rather than a volume density. The

growth of these irregular boundaries is a process, and therefore it can be captured

by using a simulation. To represent surfaces, meshes are widely used. They require

less memory compared to volumetric approaches. But growing meshes has its own

problems such as surface point density and self-collision.

E
yj
af
ja
lla
jö
ku

ll
E
ru
p
ti
o
n

B
y
S
ö
ri
n
g
is
lic
en
se
d
u
n
d
er

C
C
B
Y
2.
0
[5
6]

Figure 1.1 Example of a natural phenomenon. Eyjafjallajökull volcanic eruption in
Iceland.

3

We introduce an algorithm which models natural complex and irregular boundaries

such as cumulus clouds in 2 dimension. Since the exterior shape of a cumulus cloud

is opaque and it appears as a solid object, we decided to model it as a growing

frontier. Our system allows the user to create complicated boundaries procedurally

in 2 dimensions. Our algorithm is an example for modeling irregular natural objects.

In the future, we hope to extend the technique to capture other irregular natural

objects as well.

There are various applications for which our modeling results can be used. We

envision a scenario in which a user may wish to add irregular complexities to an

existing model or combining our results with objects in a photo. Multiple irregular

shapes generated by our method can also be laid on top of one another and rendered

manually or automatically to obtain realistic or artistic looking shapes resembling 3

dimensional clouds or similar bodies. We envision our results to be used in vector

images too. A user may wish to use our algorithm to create realistic looking clouds

or similar bodies in a vector image.

1.3 Snaxels

Active contours, also called snakes, are interconnected particles. The particles of

a snake are linked together, forming a moving chain. The snake does not have any

self-intersection. Snakes are a framework used often in computer-vision applications

to move inside images to find object boundaries. Snakes have been expanded to

computer graphics [4] and are configured to propagate through a tessellation. This

allows the snake to move in the space of the tessellation with having a means to detect

self-collision and maintaining the density of the particles on the snake. These two

issues are handled by the framework inherently and therefore, allow us to only focus

on the modeling aspect.

We will now explain snakes in more detail. Kass et al. [30] introduced an energy

minimizing, deformable spline which can be influenced by constraints to pull it to-

wards image contours. Bischoff et al. [4] introduced a new method for representing

and evolving snakes that are constrained to move on a triangular tessellation. The new

representation adapts the snake resolution to the surface tessellation automatically

4

with efficient collision detection and complete control over the topological behavior

of the snakes.

The term snaxel was first used by Sobottka and Pitas [54], as a combination of

“snake” and “element”. The term is used for the particles (or vertices) of an active

contour model. In our work we assign the snaxels a speed. We run a simulation to

allow them to grow on the tessellation. In chapter 3 we will discuss how the speed is

assigned to the snaxels.

Figure 1.2 Snaxels moving on a tessellation;. Red lines indicate segments of the
snake. Yellow vertices are snaxels and the blue ones are tessellation’s vertices.

1.4 Statement of Contribution

This thesis contributes to the area of procedural modeling in computer graphics.

The primary objective of this thesis is to use snaxels for procedural modeling in 2

dimensions and it targets cumulus clouds in 2 dimensions as an example. Our contri-

bution is a modeling technique to procedurally synthesize complex natural boundaries

mimicking cumulus clouds’ shape and surface.

1.5 Overview

The thesis is organized as follows:

In chapter 2, we review previous work and the work that has been done in the field

of automatic modeling. Our work is a procedural/sketch-based modeling system for

5

creating cumulus looking bodies through an active contour model which propagates

through a tessellation. Therefore, we first survey procedural modeling of natural

phenomena and sketch-based modeling systems where we will discuss the different

approaches to model such phenomena. Also simulation based systems and noise gen-

eration will be discussed and we will explain why such approaches were not considered

for this system. Then we proceed to discuss previous work on curve synthesis.

In subsequent chapters, we describe in detail the modeling system that we have

developed. In chapter 3 we will present our algorithm. First, we begin by discussing

snaxels’ behavior more in depth, then we present a plan for dividing the snaxel contour

into sub-contours dubbed Curves. Later in chapter 3, we discuss our methodology

of assigning speed to each snaxel using our plan to subdivide the snaxel contour as

we discussed in the previous chapter. Finally, we will discuss our plans to grow the

snaxels and produce cumulus looking structures.

In chapter 4, we will present our results and discuss their variations and compar-

isons. Next, in chapter 5, we will discuss future works and extending snaxels from

2D to 3D, and we will discuss what we have done so far in regards to that. Chapter 6

concludes the thesis. Finally, appendix A will discuss the efforts we made to extend

snaxels into 3D space with discussion on issues we ran into. We will also describe the

problems we are currently facing for future research into this area.

Chapter 2

Background

2.1 Procedural Modeling of Natural Irregular Ob-

jects

Modeling irregular objects and surfaces via user input alone is cumbersome and

would require long hours if not days to complete. Procedural Modeling eases the

process by generating the results through rules and user input values. Procedural

Modeling has been used to model different phenomena such as clouds, rocks, and

terrain. In this section we will discuss some of these phenomena which are related to

our work.

2.1.1 Clouds

A lot has been done on procedural modeling of clouds, Neyret [43] combines some

of the effects of fluid mechanics and thermodynamics as characterized by atmospheric

physicists, to model cloud creation and dynamics. In this model, a cloud is repre-

sented by bubbles. The bubbles’ behavior is guided by physical characterization of

the evolution of the shape of convective clouds. The shape of the cloud is represented

by structures smaller than the bubbles themselves. The bubbles have a recursive

substructure. As we will discuss in the upcoming chapters, this representation moti-

vated our work. Similar methods have also been investigated which involve complete

or partial usage of fluid and cloud dynamics [25, 41, 66]. Trembilski and Broßler [63]

present surface-based methods for visualization of mainly cumulus clouds. In their

approach, in order to model the clouds’ shape, they use a modified version of Neyret’s

method [43]. They produce a set of hemispheres to describe the surface of the cloud.

6

7

Their methodology is limited in the kinds of shapes that it can represent. Bouthors

and Neyret [6] proposed a model for representing the shape of cumulus clouds. Their

method stores a hierarchy of spherical particles placed on top of each other. An

implicit field defines the shape of these particles by the influence of other particles.

They use a set of shaders to create a volumetric appearance based on Gardner’s tex-

tured ellipsoids [20]. Similarly, this representation of the clouds’ surface does not

create an irregular surface as all particles are spherical. Volumetric representations

are widely used for modeling clouds, since these representations are essentially den-

sity fields. Miyazaki et al. [41] proposed a method for modeling clouds based on an

extended method of cellular automaton. They developed an interactive system for

modeling various types of clouds. Their modeling process is a simulation of cloud

formation and the computational cost of the simulation is inexpensive relative to

more physically accurate simulations due to using a simplified numerical model. The

rendering of their results is realistic as they are obtaining a three-dimensional density

distribution. Others have investigated modeling clouds as three dimensional densities

and volumes [15, 51]. This type of representation is computationally expensive. For

modeling opaque clouds, more simplified representations would suffice.

There is also a great body of work on rendering of clouds [5, 7, 8, 12, 13, 16, 20, 22,

26, 33, 38, 44–46,61]. However, we are not focused on the rendering since it is mostly

related to shading and propagation of light in the body of a cloud. These issues,

although fascinating, are not the problems we address here. Our focus is on the

shape and modeling of the surface of a cumulus cloud.

2.1.2 Rocks

Modeling of rocks has not been researched as much as clouds or even terrain.

Research in this area is relatively new. Even on a large scale, few works have been

trying to capture rock formations such as arches or tors and any other column shaped

structure which is almost vertical or possesses cavities. These shapes are particularly

hard to model with standard practices such as height map editing. They are relevant

to our work since their overall shapes are related to the ones we want to model.

Dorsey et al. [14] model weathered stone by using a slab data structure which is a

surface-aligned volume placed around a narrow region of the boundary of the stone.

8

They simulate the flow of moisture and recrystallization of minerals near the surface.

Their model governs the surface erosion of the stone. This representation models

the underlying structure of real stone. Söderlund [55] investigated two different ap-

proaches to procedurally model rocks’ shapes and generate rocks and boulders. The

first method is sphere inflation which is tessellating a sphere through recursive sub-

division on a base shape. This approach is successful in creating results with similar

characteristics to eroded rocks with a fair variety. The other method is recursive

subdivision of edge segments but ultimately was unsuccessful.

Some work has been done on rock textures. Souli et al. [59] propose a method based

on mimicking natural phenomena by representing the microscopic granular structure

of a target model. Their study focuses on granite as a heterogeneous granular mate-

rial. They first start by choosing the grain positions in space. Then by using a simple

rendering process taking into account each material component and subsurface scat-

tering, they generate a granite texture. Their model can generate natural looking

granite with a complex surface. Unfortunately, the system is computationally costly.

There are also a few works on complex rock formations such as arches and sandstone

goblins. Beardall et al. [3] present an algorithm for generating sandstone goblins by

simulating spheroidal weathering. Their weathering simulation uses bubbles centered

on axis aligned voxels. This way they approximate geometry-dependent effects of

spheroidal weathering. Their work is a step toward the automatic generation of con-

cave landscape features. Peytavie et al. [49] present a framework for representation

of complex terrains features such as overhangs, arches and caves, and with different

materials such as sand and rocks. Their hybrid model combines a volumetric discrete

data structure and an implicit representation for sculpting and reconstructing the sur-

face of the terrain. Their system allows scenes to be edited and sculpted interactively.

Their work allows for representation of arches and overhangs through simulating an

erosion process and stabilization simulation.

2.1.3 Terrain

There is an extensive body of work on terrain modeling and synthesis. Smelik et al.

[53] survey different procedural methods for terrain modeling. They present multiple

different techniques used to generate height fields for the basis of a terrain model.

9

One early technique is midpoint displacement method [40]. It iteratively subdivides

a course height field to obtain a finer one. A more common technique is fractal noise

[19, 42]. Fournier et al. [19] applied Mandelbrot’s fractional Brownian motion model

for terrain and other natural phenomena. They showed several methods for creating

stochastic modeling primitives of one and two dimensions and demonstrated the use

of stochastic interpolation of real sampled data to create realistic representations of

the sampled phenomena. Physics-based algorithms are also a good way for modifying

the terrain so it would look more natural. Musgrave et al. [42] introduced hydraulic

erosion. In their method, a terrain’s surface is gradually modified by allowing water

on the surface of the model to carry sediments to lower heights. Rusnell et al. [50]

presented a terrain synthesis method to generate a variety of features with simple

user control over the shape and location of features. Their synthesis method is based

on distances in a weighted graph. Their method provides user control over both

terrain feature placement and terrain style. It also employs path planning to produce

a height field. Using the weighted graph, a final height field is produced. However,

height fields are not suitable for structures such as overhangs and caves. There are

other works that use height fields for modeling terrain as well [11, 27, 60].

Example-based techniques have also been investigated. Zhou et al. [67] presented

an example-based terrain synthesis system. Their system would take patches from

height field represented sample terrain and use it to generate new terrain model. The

extracted patches are joined together using graph cuts and Poisson editing. Guérin et

al. [24] propose a framework based on a description of the terrain generation process by

sparsely combining a small set of terrain dictionary atoms. It blends the different land-

form features stored in a dictionary. They also demonstrate their method in several

applications such as inverse procedural modeling of terrains, terrain amplification

and synthesis from a coarse sketch. Brosz et al. [9] presented an example based

terrain synthesis technique. They use multi-resolution analysis to obtain and extract

small-scale features from the example to the base terrain’s large-scale features. Their

interactive system copies detail from the target to the base in a predictable manner.

However, similar to any example-based approach, the quality and variety of the final

output depends on the input examples. Also their interactive method requires more

input from the user than the automatic one.

10

2.1.4 Cities

There has also been an extensive body of work on procedural modeling of cities and

buildings [17,23,31,47]. Since cities are among man-made phenomena, the techniques

used mimic the grid-like patterns of urban areas and the real road networks. Similarly,

the results will include these patterns and grids, for example Manhattan-style grids.

As a result, these methods are not suitable for modeling irregular natural phenomena

where we expect the result not to take such obvious grid-like structures or pattern

which the eye can pick up quickly.

2.2 Sketch-Based Modeling

A lot of work has been done on sketch-based systems for modeling purposes. Cook

and Agah [10] provide a discussion on sketch-based modeling as well as survey ex-

isting techniques. Inflation allows the user to draw an object and have it pop into

3 dimensions. For example, Stiver et al. [62] proposed a freehand sketching system

to control the modeling of volumetric clouds. They use sketch analysis and the el-

evation at which the cloud is drawn to identify the cloud type and then generate a

mesh. The mesh is created using a rotational blending surface. The user can edit

the cloud volume by addition and removal of material through Boolean operations.

The cloud is rendered through filling the cloud mesh with particles. Wither et al. [64]

describe a sketch based interface for modeling cumulus clouds. Their system allows

the user to rapidly construct a 3D cloud surface representation. The system automat-

ically creates a skeleton from the user’s strokes and places spheres along the skeleton.

The final mesh is obtained from the union of the spheres. This representation of the

clouds’ surface does not create an irregular and detailed surface.

Paint-like methods have also been investigated. Lawrence et al. [36] investigated

combining interactive manipulation and physical simulation to control surface defor-

mations. They created a painting interface so a user can apply “paint” to the model

which defines its instantaneous surface velocity. They discovered that their painting

metaphor gives the user direct, local control over surface deformations for applica-

tions such as: creation of new models, noise removal, and adding geometric texture

at multiple scales. There are two issues that is still an open problem, self-collision

and surface point density.

11

2.3 Noise

For modeling natural phenomena, noise is one of the most used techniques in com-

puter graphics. Noise synthesizing algorithms have several advantages. They are fast

and most require minimal coding and are simple to implement. They provide the

ability to add complex and intricate details at low memory cost. There are many

types of noise functions. Some of the most used ones in the procedural modeling are

listed below.

2.3.1 Perlin Noise

Perlin [48] introduced a noise function primitive which utilizes an integer lattice to

model texture. The value at each pixel on the image surface is actually an evaluation

of an interpolated linear equation on the lattice. Perlin showcases different textures

which were modeled by evaluating the value returned by the noise function, at each

pixel. Moreover, by layering Perlin noise, Perlin turbulence can be created where

instances of Perlin noise are added together. Perlin noise is widely in use, both in

research and industry.

2.3.2 Gabor Noise

Lagae et al. [34] introduce sparse convolution noise with a Gabor kernel. The

Gabor kernel provides support over the frequency domain and the spatial domain

thus, enabling accurate control over the power spectrum. Gabor noise is procedural

and fast to evaluate. It offers accurate spectral control with parameters such as

orientation, principal frequency and bandwidth. It is non-periodic and anisotropic.

2.3.3 Worley Noise

Worley [65] presented a noise function by partitioning of space into a random array

of cells. The idea is to scatter random points in the space, then the value of each

point in space is its distance to the nth-closest randomly scattered point. The choice

of ‘n’ alters the resulting image. The result looks similar to Voronoi cells.

12

2.3.4 Stochastic Modeling

Fournier et al. [19] used fractional Brownian motion and multiple other fractional

based functions and made algorithms to generate irregular surfaces and curves. They

introduce a new algorithm that computes a realistic approximation to fractional Brow-

nian motion which is faster than with exact calculations. The advantage of this tech-

nique is that it allows for computation of the surface at arbitrary levels of details

without increasing the database. Therefore, objects with complex surfaces can be

displayed using a very small database. Although it generates irregularities and de-

tails at any level, it lacks control over the result. Therefore, techniques which can

have more control on the shape and features of the results are needed.

2.4 Curve Synthesis

There is a body of work on synthesizing and modeling curves. Curve synthesis has

been a topic in the area of computer aided geometric design (CAGD) for a long time.

The goal is to generate curves through a certain parameterization. We focus on the

techniques which are relevant to our work. Lang and Alexa [35] propose a method

for on-line synthesis of free-hand drawing styles along arbitrary base paths. They use

an autoregressive Markov Model which learns the input’s style and applies it to an

input curve. They allow addition of complexity to a curve by their proposed method

which uses a supplementary Markov chain to guide the synthesizing process. Their

method is example-based and needs the input model’s style to have some degree of

repetitiveness, otherwise it will result in noisy results. This would mean that to obtain

a variety of styles on an input curve, a tedious amount of work need to be put into the

creation of them. Therefore, for modeling natural irregular surfaces, this approach

will introduce regularities to the model. Merrell and Manocha [39] present a synthesis

algorithm for procedurally generating complex curves. Their method requires an

input example. Their method can preserve many of the example’s features such

as tangent directions, curvature, branch nodes, and closed loops. Their algorithm

has application to generating complex, curved models of man-made objects. We

are focused on natural objects and phenomena, and they possess highly irregular

and complicated surfaces. As discussed, similar to any example-based approach, the

quality and variety of the final output depends on the input examples.

13

There has been a lot of effort put into curve representation and parameterization

[52]. However, we are concerned with the procedural modeling aspect. We chose

snakes (active contours) due to two characterizing properties that they possess. Their

handling of self-collision and their control over the resulting contour’s resolution.

Chapter 3

Algorithm

3.1 Introduction

In this section, we are going to give a full description of our algorithm. First, we

start by giving a full description of snaxels’ behavior and organization. Later, we will

describe the structures that we build using snaxels to allow modifications to their

behavior as a group. Finally, we will present our algorithm by describing our plans

for growing the snake, on the tessellation.

Our algorithm starts with Poisson-disk distribution in 2 dimensions and Delaunay

Triangulation to obtain the tessellation. Once the tessellation is ready, the process

starts with a chain of snaxels set around an arbitrary vertex of the tessellation with

that vertex set as the snaxels’ source vertex. A propagation method repeatedly up-

dates each snaxel. The process finishes at either a user input criteria to stop all

snaxels or the user manually stops the growth once satisfied with the results. Figure

3.1 shows the snake after a few steps have been executed. The snake is marked by

dashed-lines.

Cumulus clouds’ structure and surface appears hierarchical. We need to mimic the

bulges and bumps that appear on top of one another. We segment the snake into

smaller chains of snaxels. We call each smaller chain a Curve. We capture the bulges

and bumps of a cloud by growing the curves during the simulation with different

speeds. The curves pass through a life cycle which controls how they grow. The life

cycle depends on how much distance curves have traveled and controls their growth

using their traveled distance. However, curves alone are not enough to obtain a

14

15

varied and complex shape. Curves are further organized into Clusters, so that groups

of curves can be given similar parameters. The clusters give us another explicit level

of hierarchy, helping us model loosely hierarchical structures such as clouds.

We came up with strategies for guiding the growth of the snake. All of them ma-

nipulate the snaxels’ speeds. We will discuss these strategies in the coming sections.

First, we start by describing the snaxels’ behavior and constraints.

snaxel

chain of snaxels

snake segment

Figure 3.1 The snake propagating through the tessellation. Dashed lines indicate
the snake. Black vertices are snaxels and blue ones are tessellation’s vertices.

3.2 Snaxels

In order for the snake to propagate through the tessellation, certain constraints

are needed. These constraints will define the basis to form the rules and behavior

of the snaxels. Similar to Bischoff et al. [4]’s method, our snaxels have the following

constraints:

• For our implementation’s simplicity, only one snake can exist in the system.

• Snaxels move on tessellation edges.

16

• Each snake’s segment can only connect snaxels which share a triangle.

• Snaxels are connected to one another forming a chain.

• For our implementation’s simplicity, the snake is allowed to pass through each

tessellation’s vertex only once. Once a snaxel passes through a tessellation

vertex, no other snaxel is allowed to pass through the same vertex.

As the snake propagates through the tessellation, the snaxels collide with each

other and the tessellation vertices. These events need to be handled properly for the

constraints to be always met. Therefore, Bischoff et al. [4] defined snaxels’ behaviors

as evolution and collision detection of the snaxels. Similar to them, we define the

following behaviors:

• Birth: A snaxel gives birth to new snaxels upon arrival at its destination tessellation

vertex.

• Merge: Two snaxels merge with one another after colliding on a tessellation edge

which results in both of their deaths and updating the snake.

• Growth: A snaxel grows along a tessellation edge from its birthing tessellation

vertex headed towards its destination vertex.

• Death: A snaxel is completely removed from the system.

• Stop: A snaxel’s growth rate is set to zero.

Using all these behaviors we can construct a state machine for each snaxel. Each

state is one of these behaviors. In the following sub-sections, we will explain the

events that take place at each described behavior.

3.2.1 Birth

The snaxel arriving at its destination vertex is called parent and the edge by which

it arrived at the destination vertex is called in-going edge. Once a snaxel reaches

its destination vertex, we remove it from the snake. Removing the parent from the

snake creates a gap in the snake’s chain of snaxels. The snaxels connected to the

parent prior to its removal are called rim snaxels. We put new snaxels on every edge

17

of the destination vertex except for the in-going edge. The new snaxels are called

children. The birth event is handled by replacing parent’s position in the snake with

the children. The children form a small chain of snaxels. We connect the ends of the

children’s chain to the rim snaxels such that the snake’s chain does not self intersect.

This maintains the constraint that no snake’s segment can cross tessellation edges

and allows the snake to continue growing.

As shown in Figure 3.2(a), the parent denoted ‘P ’ is moving toward its destination

vertex. Once it arrives at its destination vertex, it is discarded and its connections

with rim snaxels are removed. After the removal of parent and its connections, each

child is placed and set to grow on each edge of the destination vertex except the

in-going edge, as shown in Figure 3.2(b). Once the children are created, they will

be sorted by the angle of the edges they lie on with the angle of the edge which the

parent came from. Then, each child in the sorted list is connected to the next one,

starting with the first and ending with the last in the list. The children are sorted

so that once they replace the parent’s position in the snake, the snake’s consistency

is kept. Once the children are connected and formed a chain of snaxels, we check to

see which one of the rim snaxels is on the same triangle as the first or the last child

in the list. We associate each of the rim snaxels with the first and the last children

based on their adjacency on the same triangle. Once they are associated, we connect

them. For example, as shown in Figure 3.2(b), rim snaxel ‘r1’ resides on the same

triangle as ‘c4’ and ‘r2’ resides on the same triangle as ‘c1’. They are connected to

one another thus, completing the snake’s chain.

P

(a) Before the birth event

r1

r2

c
4

c
3

c2

c1

(b) After the birth event

Figure 3.2 Before and after a birth event. (a) Snaxel P is about to arrive at its
destination. (b) After snaxel P arrives, it is deleted and the birth event takes
place which results in new snaxels being born and added to the snake.

18

3.2.2 Merge

Snaxels may hit one another while growing through the tessellation’s edges. In this

case the snaxels involved in the collision are set to merge with one another. During

this event, the state of both snaxels involved is set to the death state and their

connections to their neighboring snaxels are removed. The snaxels involved are called

merging snaxels and their neighboring snaxels are called neighbors. The neighbors of

the merging snaxels are connected to one another to maintain the connectivity of the

chain of snaxels on the snake. We will describe how the connectivity is maintained.

Similar to the birth event, we use the triangles shared between the neighbors of the

merging snaxels to maintain the snake’s chain’s connectivity and consistency. How-

ever, if the merging snaxels are connected to one another, then this is an indication

that the snake has passed through both vertices of the edge on which the merge is

happening. Therefore, we can remove the merging snaxels and connect the neighbors.

Then the snake’s chain’s connectivity is maintained. Also if the merging snaxels are

only connected to each other, then they can be removed and the snake does not need

any updating. If the merging snaxels are not connected, then we use the triangles

shared between them to maintain the snake’s chain’s connectivity.

Figure 3.3 shows before and after a merge event. As shown in Figure 3.3(a), two

snaxels called ‘m1’ and ‘m2’ are about to collide with one another. The neighbors

of ‘m1’ are called ‘n11’ and ‘n12’ and the neighbors of ‘m2’ are called ‘n21’ and ‘n22’.

We find which neighbor of ‘m1’ resides on the same triangle as which neighbor of

‘m2’. Then we connect those who share their triangle with one another. For example

in Figure 3.3(a), ‘n11’ shares the triangle it resides on with ‘n21’ and ‘n12’ shares its

triangle with ‘n22’. Therefore, ‘n11’ is connected to ‘n21’ and ‘n12’ is connected to

‘n22’.

19

m1

m
2

(a) Before the merge event

n
11 n

21

n
12

n
22

(b) After the merge event

Figure 3.3 Before and after a merge event. (a) Snaxels m1 and m2 are about to
merge with one another. (b) The snaxels are deleted and their neighbors
connected to one another.

After a birth event or a merge event, we never connect the snaxels in such a way

that would result in a snaxel with both of its connections on a single triangle. This

kind of connection is illustrated in Figure 3.4. The Figure 3.4 shows snaxel ‘s’ with

both of its connections inside a single triangle. If we never connect snaxels in the

way shown in Figure 3.4, then it is safe to assume we will never encounter such a

connection before a merge or birth event. The only connections which are produced

by our handling of birth and merge event are depicted in Figure 3.5. Figure 3.5 shows

the ways snaxel ‘s’ can be connected to its neighbors. A snaxel can have each of its

connections in a separate triangle as depicted in Figure 3.5(a) or have one of them

on the edge that it is growing on as shown in Figure 3.5(b).

20

s

Figure 3.4 A snaxel with both of its connections on a single triangle. Note that
this situation is impossible.

s

(a)

s

(b)

Figure 3.5 Types of connections between a snaxel and its neighbors. (a) Snaxels S
has each of its connections on a separate triangle. (b) Snaxels S has one of its
connections on the edge it is growing on.

3.2.3 Growth

Snaxels are set to grow right after their birth. It is within this state they are

assigned a speed. The processes to calculate the speed are discussed in section

21

3.4. Once the speed is calculated, the location of the snaxel is updated by Euler

integration:

Ix(t+∆t) = Ix(t) + vs ∗ ue∆t

where Ix(t) stands for the location of the snaxel at time step t, vs stands for the speed

of the snaxel, ue stands for the normalized vector of the edge that the snaxels lies

on in the direction of its growth and ∆t stands for the elapsed time since the last

update.

3.2.4 Death

Once a snaxel has merged with another one, it is set to die. Death of a snaxel

results in the snaxel being removed from the system. In our algorithm death happens

after the merge between two snaxels and once a snaxel reaches its destination.

3.2.5 Stop

Any snaxel can be stopped at any point during the simulation. This behavior

can be triggered by imposing a criteria so that it will stop two different bodies from

merging.

3.3 Curves

In the previous section, we discussed snaxels and their behaviors and constraints.

In this section we are going to introduce a structure called a Curve. A curve is a

sub-chain of the snake. As shown in Figure 3.6, a chain of snaxels forms a curve. The

curves are not allowed to overlap. We subdivide the snake into multiple segments so

that we can assign different speeds to each segment and thus model a complex shape

by varying the speed of different curves. Figure 3.6 shows an example of a curve. A

curve is illustrated which starts from and including snaxel ‘S0’ to and ending with

snaxel ‘Sn’. All the snaxels in-between are included in the curve.

22

S
0

Sn

Figure 3.6 Example of a curve. Snaxels S0 to Sn form a curve.

3.3.1 Updating Curves

As the snake propagates through the tessellation, the curves will need to be updated

depending on the events that take place. Since each curve is made out of a chain of

snaxels, it is important to keep the chain’s connectivity when a snaxel dies or gives

birth to new snaxels. In this section we are going to discuss how the curve is updated

in the face of the events that occur.

Creating New Curves

As snaxels of a curve grow on the tessellation, the curve itself keeps on growing in

size. Sometimes we may need to create new curves because they get too long. To

control when to break the curves we assign a length limit to each curve, such that

when a curve reaches a certain length, it will break into new curves. The break can

happen at any location on the curve. When curves grow, their snaxels give birth to

new snaxels and the curve gets longer as a result. Curves can have different number

of snaxels but the same length. We also pick a random snaxel on the curve to break

the curve from. When a curve reaches a predetermined maximum length, it will break

into two new curves. Figure 3.7 shows the result of this process: a long curve is split

into to new curves. After the break, each of the joints of the previous curve becomes

one of the joints of the new curves. For example snaxel S0 and Sn which where the

joints of the previous curve, each have become a joint of the new curves. S0 is a joint

of curve S0 to Si and Sn is a joint of curve Sj to Sn.

23

S0 Sn

Si Sj

Figure 3.7 Example of breaking of a curve. The curve designated by snaxels S0 to
Sn, is divided into to new curves; one from S0 to Si and another from Sj to Sn.

Merging of Snaxels

In our method, we use the right hand rule [18] to sort the snaxels inside each curve.

This allows us to have a consistent chain and it makes the handling of events easier.

As snaxels on the curve merge, the chain needs to be updated, especially at the joints

where the head and tail of the curve gets updated.

When two snaxels which are connected to each other merge, they and their con-

nections are deleted. To update the curve, we connect the neighbors as stated in the

previous section to maintain the snake’s chain’s connectivity.

If the snaxels which are merging are not connected to one another, then two snakes

are created. Since we are only growing one snake to obtain a model and snaxels only

grow forward, then the snake never creates two separate snakes unless one is contained

by the other. Therefore, out of the two snakes created from the merge, only one is the

model which we are growing. Since one of them is contained by the other, we assume

that the inner snake is shorter in length. However, this is a heuristic. In practice,

we have not observed a case where the inner snake is longer than the outer one. The

shorter one is the hole that was created by the merge event and is set to be discarded.

Figure 3.8 shows a merge event happening between two snaxels ‘m1’ and ‘m2’ from

two different curves. As shown, the snaxels involved in the merge event are removed

from both curves and their neighbors are connected to one another as discussed in

previous section.

24

m
1 m

2

(a) Before the merge event

n11 n
21

n
12

n
22

(b) After the merge event

Figure 3.8 Before and after a merge event of two non-connected snaxels. (a)
Snaxels m1 and m2 are about to merge with one another. (b) Their merge
results in part of each of the curves they belong to being removed.

Detecting Holes

In Figure 3.8, the previous snake is split into two new ones: one containing the

segment ‘n11n21’ and the other containing the segment ‘n12n22’. This is an illustration

of a self collision of the snake. Snaxels ‘m1’ and ‘m2’ on the snake are about to

merge with one another,resulting in two new snakes. We need to be able to tell which

resulting snake is the model which we are growing and which one is the hole. We need

to be able to detect the holes which are generated as the snake propagates through

the tessellation. After a merge event between two snaxels generates two snakes, we

detect the outer snake which is our main snake by traversing both of them. We count

the number of snaxels in each. After comparing the number of snaxels, we pick the

25

one with more snaxels as the outer snake and the other is marked as a hole and

discarded.

This mechanism for detecting holes inside the snake is fallible. The number of

snaxels of the inner snake can be bigger than the outer one thus resulting the outer

snake to be regarded as the hole. We assume that the inner snake is shorter in length.

However, this is a heuristic and we are aware of mistaking the outer snake for a hole

can occur. In practice, we have not observed a case where the inner snake is longer

than the outer one.

Merging of Curves

Curves can become very small as their snaxels merge with snaxels of other curves.

This reduction in number of snaxels will reduce the length of the curve. We decided

to have a parameter called ‘cmin’ that allows a curve which its length is less than

‘cmin’, to merge with one of its neighbors. When a curve’s length becomes smaller

than the predetermined value, it will be merged with one of its two neighbors. Since

the snaxels in each curve are kept sorted this process simply connects the remaining

snaxels of the curve to either the end or the beginning of its neighbor’s chain of

snaxels. Figure 3.9 shows this process. A small curve starting from snaxel ‘C’ to ‘D’

has reached the minimum allowed length. Therefore, it is merged with its neighboring

curve which starts from snaxel ‘A’ to ‘B’.

A

B

C

D

(a) Before merging two curves

A D

(b) After merging a smaller curve with one of

its neighbor

Figure 3.9 Example of merging of a Curve with another. (a) A Small curve
starting from snaxel C to D has reached the minimum allowed length. (b)
The curve has merged with its neighboring curve starting from A to B, thus
expanding the neighboring curve to expand its range to A to D.

26

3.4 Speed Scheme

In the previous sections, we discussed snaxels and how they propagate on the

tessellation. We also discussed how snaxels are grouped together to form curves and

discussed the events that result from snake’s propagation on the tessellation. In this

section, we will discuss how we manipulate the speed of each snaxel in a curve.

Cumulus clouds and volcanic ash-clouds and similar bodies, have details on their

exterior visible at multiple different scales. As a result, the surface of these bodies

looks segmented such that each segment has intricate details mimicking rounded

segments on smaller scale. Each segment can be described as a bulge and the smaller

details on them can be represented as smaller rounded smoothed bumps. At the

growth state, we assign a speed to each snaxel. We are trying to mimic the overall

shape of a cumulus cloud or a volcanic ash-cloud similar to Figure 3.10, such that

each curve captures a bulge of the cloud.

One approach to assign speed to each snaxel is to interpolate the curve by setting

the middle of the curve as the maximum input velocity and the corners at zero. This

creates two issues which are illustrated in Figure 3.11. The first problem that can be

observed is the immovable joints. The joints do not move and therefore throughout

the process only get updated by the merging of their neighboring snaxels. This

impacts the overall shape. The second problem is that the growth starts to become

more round with little to no variations. We came up with plans to tackle these issues

by changing the way a snaxel’s speed gets assigned.

The speed is calculated in two steps. The sum of both steps is taken as the speed

of the snaxels. The first step attempt to give the snake a consistent growth and the

second step attempts to add details to the snake. In the first step, a base speed is

calculated for each snaxel depending on the snaxel’s position in the curve and the

two neighboring curves. This step ensures that the corners move consistently with

the rest of the object. In the second step, which is the details phase, we compute

speeds based on a shape being imposed on the snaxel chain. By imposing a shape on

the snaxels, we ensure that each curve can produce bulges and bumps resembling a

real cumulus cloud or similar body. We will also describe the constraints on the type

27

T
av
u
rv
u
r
V
ol
ca
n
o,

R
ab
au
l,
P
ap
u
a
N
ew

G
u
in
ea

B
y
Jo
n
at
h
an

E
.
S
h
aw

is
lic
en
se
d
u
n
d
er

C
C
B
Y

2.
0
[2
9]

Figure 3.10 A Volcanic ash-cloud.

28

Figure 3.11 A result of linear interpolation over each curve. The linear
interpolation is computed over the curve by setting the middle of the curve as
the maximum input velocity and the corners at zero. Note that the inner
contours are for illustrating and visualizing the growth process and that
different curves are visualized with different colors for simplification.

of shape that is being used to be imposed on the snaxels.

In the next subsections, we are going to take a look at how each step is calculated to

obtain a speed for a given snaxel.

3.4.1 Base Speed Scheme

We need to ensure the corners move consistently with the rest of the object. To

achieve this we linearly interpolate the curve’s snaxel chain such that all snaxels of

the curve gain non-zero speed depending on their spatial distance on the curve from

the mid-point of the curve and the distance from the mid-point of the neighboring

curves. Each curve has its own joints, named ‘jcx’, here ‘c’ stands for the the curve

itself and ‘x’ stands for the neighboring curves. For instance Figure 3.12 shows a

curve called ‘B’ with joints ‘jBA’ and ‘jBC ’ connecting curve ‘B’ to its neighboring

curves ‘A’ and ‘C’.

Each curve is assigned a base speed value. The value is set by an input interval of

[vmin, vmax]. The base speed values of the curves is needed to compute the base speed

of each snaxel in that curve. For example, for each snaxel ‘s’ on curve ‘B’ which has

29

jBA jBc
B

A C

Figure 3.12 Curve ‘B’ is joint to curves ‘A’ and ‘C’ at snaxels ‘jBA’ and ‘jBC ’
respectively.

2 neighboring curves called ‘A’ and ‘C’, we get the spatial distance from snaxel ‘s’

to the mid-points of the curves ‘B’, ‘A’ and ‘C’ called ‘pb’, ‘pa’ and ‘pc’ respectively

and use them to determine how much each curve contributes to the base speed of

snaxel ‘s’. We compute these distances by taking the spatial distance from snaxel

‘s’ to the mid-point of curve ‘B’, ‘A’ and ‘C’ called ‘d(s, pb)’,‘d(s, pa)’ and ‘d(s, pc)’

respectively. We also take the distances from snaxel ‘s’ to the joints of curve ‘B’

called ‘d(s, jBA)’ and ‘d(s, jBC)’ to determine which neighboring curve is closer to the

snaxel ‘s’. The neighboring curve that is farther from snaxel ‘s’ does not contribute

to its base speed. The distances are computed along the curve’s chain of snaxels. We

take the distances from mid-point of curve ‘B’ to the mid-point of curve ‘A’ and ‘C’

called ‘d(pb, pa)’ and ‘d(pb, pc)’ respectively, and use them with the distances from ‘s’

to the mid-points of the curves and the joints of curve ‘B’ to compute the weights

‘wb’, ‘wa’ and ‘wc’. The weights are computed depending on where snaxel ‘s’ lies on

curve ‘B’:

wb =

d(s,pa)
d(pb,pa)

if d(s, jBC) ≥ d(s, jBA)

d(s,pc)
d(pb,pc)

otherwise
(3.1)

wa =

d(s,pb)
d(pb,pa)

if d(s, jBC) ≥ d(s, jBA)

0 otherwise
(3.2)

30

wc =

0 if d(s, jBC) ≥ d(s, jBA)

d(s,pb)
d(pb,pc)

otherwise
(3.3)

Then we take the base speed value of ‘B’,‘A’ and ‘C’ called ‘vB’, ‘vA’ and ‘vC ’ re-

spectively. Using the weights for each of curve’s base velocity, we compute a snaxel’s

base speed called ‘bv’ by applying each of the weights computed above to each curve’s

base speed:

bv = wb · vB + wa · vA + wc · vC (3.4)

where ‘bv’ is the base speed of snaxel ‘s’ on curve ‘B’. The base speed is supposed

to mimic a basic curved propagation through the tessellation at the beginning of the

growth.

Figure 3.13 shows a result generated by computing the speed of the snaxels in two

steps. First, the base speed described above is calculated and then the details phase

is calculated as a linear interpolation of the snaxels’ location over the curve’s chain.

Base speed causes the snake to grow in all directions. This is because the base speed

guarantees none of the snaxels get zero speed value to grow the snake consistently.

We need a method to gradually reduce the effect of the base speed so that we can

grow the snake in any direction that we wish. To do this we use the weighted sum of

both steps to compute the speed of each snaxel. Since the weight function needed to

be designed in a way such that the influence of the first step slowly vanishes, we used

a parameter to control the effect of base speed called the effect coefficient denoted

‘k’. The effect coefficient is computed for each snaxel:

k = e−rt (3.5)

where ‘r’ is the influence rate set by the user and ‘t’ is the traveled distance by the

snaxel. The base speed is weighted by a predetermined user input parameter, ‘ws’.

The effect coefficient is applied to ‘ws’ to control it:

vs = ws · k · bv + (1− ws · k) · lv (3.6)

where ‘vs’ is the speed of the snaxel, ‘bv’ is the basic speed and ‘lv’ is the details phase.

Figure 3.14 shows the result of this process. The inner contours illustrate the growth

31

process with different curves visualized with different colors. Table 3.1 contains the

parameter settings used to generate the figure.

So far, the details phase for a snaxel is the linear interpolation of the snaxel’s

location on the curve’s chain and all the sample results presented have that in

common. This way of setting the details phase’s speed does not yield curves with

varied shapes. We will replace the details phase with a new approach and discuss it

more in depth in the next sub-section.

Figure 3.13 Result of computing each snaxels’ speeds by adding a basic speed to
the linear interpolation of the snaxels’ locations in the curve.

32

Figure 3.14 Result of controlling the base speed through an effect coefficient.

Figures r ws [vmin, vmax] cmin

Figure 3.13 N/A N/A [5.0,10.0] 3.0

Figure 3.14 0.1 1.0 [5.0,10.0] 3.0

Table 3.1 Parameters used in the simulations

3.4.2 Circular Speed-Assigning Scheme

As mentioned previously, the details phase has been computed by the linear in-

terpolation of the snaxels’ locations on the chains. All the sample results presented

above have that in common. The details phase needs to be computed in such a way

that it can create a shape that is similar to a bulge. As mentioned above, we want to

be able to produce bulges resembling cumulus clouds and similar bodies. We decided

to impose a shape, for example a circle, on the growing curves. This will allow us to

create bulges that better resemble a cloud shape. Figure 3.15 compares this method

with a linear interpolation over the curve as discussed in previous section.

33

(a) Circular Scheme Result (b) Linear Interpolation Result

Figure 3.15 Comparison of Circular scheme method and linear interpolation over
the curves. Both results were generated with the same values for each
parameter shown in Table 3.2.

Similar to the calculation of base speed, we assign each curve a shape velocity.

The shape velocity is the maximum speed a snaxel on that curve is allowed to have

as its details phase velocity. We project the locations of the snaxels of a curve on

a line by keeping their relative distances. See Figure 3.16 for an illustration of the

scenario. We use the shape-velocity of curve ‘c’ as a vector dubbed ‘~vc’ to obtain a

distribution of velocities across the curve’s chain. We place the vector perpendicular

to the line with the projected snaxels’ locations. We use the shape-velocity vector to

distribute velocities on the curve’s chain such that the middle of the chain gets the

shape velocity value and the joints of the curve’s chain get zero.

We impose a circle onto the curve’s chain by three points: shape-velocity vector’s

end and the two endpoints of the line holding the snaxels’ relative projection. The

circle serves as the distribution of velocities. Then, we take a fixed point at the

bottom of the obtained circle. We create vectors which start at the fixed point and

go through each projected snaxel’s location on the line to intersect with the circle.

Finally, we take a partial length of each vector starting at the projected snaxel’s

location and ending at the vector’s intersection on the circle. This partial length of

each of these vectors is the speed of the corresponding snaxel.

34

y

x
O P1

P2

P3

s

x

Figure 3.16 Circular Speed-Assigning Scheme Example. The velocity of snaxel ‘s’
on the curve is set to the length of the vector ‘ ~sx’.

Figure 3.16 shows the process of acquiring snaxel speed using this scheme. The

curve’s snaxels’ locations are projected on the line starting at the origin labeled

‘O’ and ending at point ‘P1’. The length of line ‘OP1’ is a fixed user input called

‘Gmax’. The distances between the snaxels on the curve are kept. As mentioned

above, the shape-velocity vector of each curve ‘c’ is dubbed ‘~vc’. Vector ‘~vc’ which is

perpendicular to the line ‘OP1’, intersects with the circle at point ‘P2’. Point ‘P2’ is

located at ‘(Gmax

2
, |~vc|)’. Therefore, the middle of the curve will get the shape velocity

of the curve. The shape velocity is generated randomly in our method from an interval

of [vmin, vmax]. The minimum and maximum are input parameters as discussed in the

base speed section. Point ‘P3’ is the intersection of the circle with vector ‘−1 · ~vc’,

as shown in the figure. Point ‘P3’ represents the fixed point which is used to shoot

vectors through each projected snaxel’s location. For example for a snaxel ‘s’ on the

curve, as shown in the figure, a vector is placed at the fixed point ‘P3’ going through

the projected snaxel’s location to hit the surface of the circle at point ‘x’. We name

the vector ‘~vs’. The length of this vector starting from the projected snaxel’s location

and ending at the point ‘x’ is the speed of the snaxel ‘s’, which will always be positive

or equal to zero. At the curve’s joints (the curve’s first and last snaxels) it will always

be zero.

35

Figures r ws [vmin, vmax] cmin Gmax

Figure 3.15(a) 0.1 1.0 [10.0,25.0] 3.0 10.0

Figure 3.15(b) N/A N/A [10.0,25.0] 3.0 N/A

Table 3.2 Parameters used in the simulations

y

x

P3

s

y

x

O P1

Figure 3.17 Example of an arbitrary shape with occlusions. The occlusions
prohibits the method to be able to assign a speed to the snaxel ‘s’.

Every point on the shape should be visible from the point ‘P3’ otherwise, the non-

visible part of the shape will not be captured. As shown in Figure 3.17, if a part of

the shape is occluded by itself, it will not affect the snaxels’ speeds as it should. For

example as shown in the figure, the velocity of snaxel ‘s’ cannot be determined due

to the fact that the vector ‘ ~P3x’ hits the shape in more than one point. This is one

of the drawbacks of this speed-assigning scheme mechanism. Since the vector of each

snaxel does not curve around occlusions and therefore only shapes without occlusions

are suitable for this mechanism.

36

One can consider other shapes as long as it meets the criteria mentioned above.

However, we are not focusing on these variations, our focus is on modeling cumulus

clouds features which resemble different sized circles.

In the coming section, we’ll describe our plans to grow the snake on the tessellation

using the scheme discussed here to capture structures similar to cumulus clouds or

volcanic ash clouds.

3.5 Growth Strategies

In the previous sections, we discussed how we represent the growing contour and

how it moves on the tessellation. We also discussed how the speed of each snaxel is

set with respect to which curve it belongs to and its location on that curve. However,

the growth of the curves needs to be manipulated to get results which have structures

similar to cumulus clouds or volcanic ash clouds. In this section we will discuss how we

control the overall shape of the final result by introducing strategies for manipulating

curves’ growth. We also allow user interaction through a sketch-based system.

3.5.1 Length-Limits Table

Some control over the limit of each curve is needed. If the length limit stays the

same for each curve, the curves will simply grow and keep on splitting. As shown in

Figure 3.18, The small bumps of a cloud reside on big bulges: a recursive subdivision

of volume and surface. We want to mimic this pattern using the allowed length limit

of each curve.

As curves grow, their length increases. The control their length limit can control

the exterior shape of the snake. Therefore, we decided to provide different length

limits at different distances traveled by each curve. We constructed a table similar

to the one shown in Table 3.3. The traveled distance by each curve is computed by

picking the biggest distance traveled by any of the snaxels of that curve. If at any

point, the traveled distance of the curve lies in any of the ranges shown in the table,

the curve’s length limit becomes the corresponding maximum length limit. Figure

3.19 shows a result obtained through this method. We use the tables to first allow

for some simple structure to be formed. Then allow the structure to grow for some

37

C
u
m
u
lu
s

B
y
le
n
s-
fl
ar
e.
d
e
is
lic
en
se
d
u
n
d
er

C
C
B
Y

2.
0
[3
7]

Figure 3.18 Example of a cumulus cloud’s surface

distance and finally, apply texture by reducing the curves’ lengths.

Traveled Distance Range Maximum Weight-Limit

0-50 200

50-300 100000

> 300 25

Table 3.3 Example of a Weight-Limits Table

38

Figure 3.19 A result obtained by controlling the curves’ length-limits through
Table 3.3. The values for each parameter are shown in Table 3.5.

By adding another entry to the length-limits table shown in Table 3.3, we are able

to make the result get a layered pattern mimicking a cumulus cloud or a volcanic ash

cloud. Figure 3.20 shows the result obtained by modifying Table 3.3 to add another

entry and changing it into Table 3.4. This change will make the parent curves to have

a bigger maximum length. However, as the origin of the growth for all the curves is

set at a fixed point, this change does not produce arbitrary complex shapes.

We grow more than one object to obtain arbitrary complex shapes. In the next sub-

section, we will discuss how grouping curves together can help us achieve generating

more complex shapes.

39

Traveled Distance Range Maximum Weight-Limit

0-50 200

50-200 100000

200-300 500

> 300 25

Table 3.4 Modified version of Table 3.3

Figure 3.20 A result obtained by controlling the curves’ length-limits through
Table 3.4. The values for each parameter is shown in Table 3.5.

Figures r ws [vmin, vmax] cmin Gmax

Figure 3.19 & 3.20 0.1 1.0 [5.0,30.0] 3.0 10.0

Table 3.5 Parameters used in the simulations

40

3.5.2 Clusters

We are not able to produce the arbitrary shape of cumulus clouds or the almost

vertical shape of the volcanic ash cloud, just by manipulating the limit of length of

curves. Figure 3.21 shows images of such arbitrary shapes of cumulus clouds. Our

challenge is to make sure that curves stop their growth randomly but still manage

to keep a cohesive shape. This means that curves should form separate groups and

some groups should stop while others grow. To achieve this we introduce a way of

grouping curves together so that we can manipulate the behavior of curves even more

to obtain the discussed results.

Clouds
By Gilad Rom is licensed under CC BY 2.0 [21]

Cumulus congestus
By Ian Jacobs is licensed under CC BY
2.0 [28]

Cumulus mushroom
By Anders Sandberg is licensed under CC
BY 2.0 [2]

Figure 3.21 Examples of Clouds’ Structures

41

To produce arbitrary shapes using curves, we group some of the curves into a

Cluster. We group curves into a cluster gradually. Each cluster is born out of one

curve. As that curve splits, the resulting curves are added to the cluster and the same

is done for the splitting of the resulting curves. Any new curve created from a long

curve breaking is added to the cluster of the said broken curve. Once a snaxel of a

curve on a cluster reaches a predetermined traveled distance, the cluster stops. Upon

stopping, all curves in that cluster stop. Then, we choose one of the curves of the

cluster to start the next cluster. This process is repeated for a predetermined number

of times or till the user is satisfied with the result. Figure 3.22 shows a result which

was generated through growing 2 clusters using this method. The number of clusters

which the system attempts to grow is a parameter called ’nc’.

Figure 3.22 A result obtained growing 2 clusters following Table 3.3. The
horizontal line at the bottom of the image indicates that the growth has
reached the boundaries of the screen. In our implementation, the snaxels are
stopped when they reach the boundaries of the screen. The values for each
parameter is shown in Table 3.6.

In our simulations, the traveled distance of the snaxels inside the cluster can be

chosen randomly therefore, making some of the clusters to grow less than the others.

We reset the traveled distance by setting it to a new random value from the interval

of ’[tmin, tmax]’. Also the amount that a cluster is going to grow can be changed to

create clusters which have bigger and more stretched out curves than others. We

pick a random allowed growth for each cluster from an interval of ’[gmin, gmax]’. If

42

the difference between the traveled distance and the growth allowed is small then the

cluster will have a short life. The cluster’s irregularity depends on the last curve’s

length-limit assigned to it.

Figures r ws [vmin, vmax] cmin Gmax [tmin, tmax] [gmin, gmax]

Figure 3.22 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,1] [350,380]

Table 3.6 Parameters used in the simulations. Ns stands for number of snaxels on
the snake. Nv stands for number of tessellation’s vertices.

3.5.3 Sketch-based

We decided to give the user the ability to draw a shape into the tessellation, since

randomization may not capture the artist’s imagination and the artist may wish to

grow a cloud similar to a target shape of their choosing. Basically, we developed a

sketch-based system on to our existing model. It works by the user drawing multiple

connected curves, and the system will find the associated triangles in the tessellation

and marks them. Then the process starts by the snake engulfing the marked triangles

first. Then, the process will follow the length-limits table. The user can control the

thickness of snake’s initial growth around the drawn shape through the parameter

’ct’. Figure 3.23 shows a user attempt to model a mushroom cloud. To obtain this

result the Table 3.7 was used. The process was stopped by the user.

Traveled Distance Range Maximum Length-Limit

0-50 500

50-100 50

> 100 50

Table 3.7 The Weight-Limits Table used in figure 3.23

43

(a) (b)

Figure 3.23 User attempt to model a mushroom cloud. Left shows the result and
the initial shape drawn by the user. Right shows the final result. The process
was stopped by the user. The values for each parameter is shown in Table 3.8.

Figures r ws [vmin, vmax] cmin Gmax ct

Figure 3.23 0.1 1.0 [2.0,25.0] 3.0 10.0 1.0

Table 3.8 Parameters used in the simulations. Ns stands for number of snaxels on
the snake. Nv stands for number of tessellation’s vertices.

Chapter 4

Results & Discussion

In the previous chapter, we discussed our algorithm and how it generates cloud-like

objects. We also discussed our approach and the parameters which can be used to

control or influence the result. In this chapter, we will begin by showing our results

and discuss and compare them with our target shapes and images. Then, we will

show how the parameters can impact the result and cause more variations and why

certain values are preferred for some parameters.

Figure 4.1 shows a comparison between a result from our algorithm and a silhouette

of a volcanic ash cloud. The result shown in Figure 4.1(b) has features similar to the

ones shown in Figure 4.1(c). Smoothed bumps on the bottom section of the result

are very similar to the bumps on the silhouette’s boundary. Although the silhouette

has very few small extrusions on its boundary, few small extrusions on the boundary

of the result are similar to the ones on the silhouette. The roundness of large bulges

on the result mimic the ones on the silhouette’s boundary. This comparison shows

our algorithm can capture large and small features of the target image, even though

the silhouette’s features are not produced from a cross section of the target image.

We used our approach to produce results which capture the surface and shape

complexity of cumulus clouds and similar objects. Figure 4.2 shows a comparison

between our results and real world cumulus clouds and volcanic ash-clouds. The

results are automatically generated and do not attempt to specifically model the

target images. They are intended to demonstrate that we have been able to capture

the main features of our target objects. We are going to discuss how our parameters

capture these features.

44

45

E
yj
af
ja
lla
jö
ku

ll
E
ru
p
ti
on

B
y
S
ör
in
g
is
lic
en
se
d
u
n
d
er

C
C
B
Y
2.
0
[5
7]

(a)

(b) (c)

Figure 4.1 (a) Eyjafjallajökull volcanic eruption in Iceland. (b) One of our results.
(c) A 2 dimensional silhouette extracted from the image.

Our method can capture irregular shapes. For instance, Figure 4.2(e) shows a

result which has a very irregular shape and detailed surface features similar to the

target Figure 4.2(f). The result appears to have small bulged out features similar to

the target image. This is due to the variations in the cluster’s growth distance. As

discussed in previous chapter, the intervals ’[tmin, tmax]’ & ’[gmin, gmax]’ control how

much a cluster grows. A cluster will shrink in size by resetting the traveled distance

to a large value. Therefore, it reaches the final entries faster. If multiple clusters grow

46

on top of each other and each have a small size then the final result will have a more

irregular shape. Also the detailed surface is obtained by assigning a low value to the

last entry in the length-limits table. This ensures that at the final step, the curves are

going to have very short and limited length which results in detailed surface. Later,

we will discuss how our parameters control the amount of details on the surface of

our results.

Our method can also capture bulged out features of cumulus clouds or volcanic

ash-cloud. For example, Figure 4.2(c) shows a result that has the bulged out features

of a cumulus cloud like the one shown in Figure 4.2(d). The result has different sized

bulges which have grown out at different distances. This is caused by the length-

limits table’s values. As discussed in previous chapter, the variety in the table allows

for a random structure to form. Then this structure grows to a certain distance from

the origin of the growth. Finally, the last entries will add bumps and details to the

structure. The random speed values assigned at each curve controls how big the

bulges get.

Finally, Figure 4.2(a) shows that our algorithm is able to add varieties of details on

the surface of the result. It is very similar to the cumulus cloud in Figure 4.2(b). The

result has bulges that appear to grow more aggressively than others and those that

appear to be bigger. The lower part of the result has more smoothed bumps than the

rest of the body. These changes are due to two separate parameters. As discussed in

previous chapter, the interval ’[gmin, gmax]’ controls how much clusters grow. There-

fore, if the last two entries in the length-limits table have their maximum length-limit

set to two different values, then the clusters can gain different surface details by as-

signing the interval ’[gmin, gmax]’ to cover the required traveled distance in both of

those entries. This combination only controls the size of the curves on the clusters.

Another parameter in control of this feature is the speed interval ’[vmin, vmax]’. As

discussed in previous chapter, the speed interval controls the speed of the growing

curves. By increasing the interval, curves can vary in their growth and some grow

slowly and others more aggressively. This results in a highly irregular surface.

47

(a)

to
rm

en
ta

cl
ou

d

B
y
ki
lla

u
ai
ra

is
lic
en
se
d
u
n
d
er

C
C

B
Y
2.
0
[3
2]

(b)

(c)

I
M
G
_
6
3
2
3
1

B
y
A
br
ax
as
3d

is
lic
en
se
d
u
n
d
er

C
C
B
Y
2.
0
[1
]

(d)

(e)

E
yj
af
ja
lla
jö
ku

ll
E
ru
p
ti
o
n

B
y
S
ö
ri
n
g
is
lic
en
se
d
u
n
d
er

C
C

B
Y
2.
0
[5
8]

(f)

Figure 4.2 Comparison between our results and real world cumulus clouds and
volcanic ash-clouds.

48

We have obtained varied results even with the same settings, due to the randomness

involved in choosing features such as first curve of a cluster or velocity of snaxels. The

choice of curve for growing the next cluster seems to heavily impact and influence the

result. The results shown in Figure 4.3 are all generated with the same settings and

length-limits table. However, they are varied in shape. This is due to the initial curves

chosen to grow new clusters. As mentioned in the previous chapter, new clusters grow

out of a single randomly chosen curve. For example, Figure 4.3(b) and 4.3(e) both

have the same number of clusters. However, Figure 4.3(b) is more elongated than the

result shown in Figure 4.3(e).

Traveled Distance Range Maximum Length-Limit

0-50 400

50-150 1000

150-200 1500

200-250 50

Table 4.1 Length-limits table used in our results

49

As discussed above, we managed to create clusters which are varied in size. Figure

4.3(f) has a distinct feature which is magnified in Figure 4.4. The upper part of the

result seems to get narrow and form a neck. We want to be able to produce such

variations. We can mimic similar features and obtain more varied shapes by increasing

the number of clusters and increasing the interval for resetting the traveled distance

to have higher minimum and maximum. Figure 4.5 shows results with increase in

number of clusters. However, obtaining varied shapes with narrow features is not

always guaranteed. As the number of clusters grow, they can overlap and simply add

to the thickness of the body of the result. Figure 4.6 shows such an object. The

number of clusters in this result is similar to the number of clusters in Figure 4.5(a).

Figure 4.4 A ’neck’ feature in one of our results

50

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3 Results obtained through same settings with exception in number of
clusters From left to right column, 2,3 and 4 clusters were used. Table 4.1 was
used for length limit manipulations.

51

(a) (b)

Figure 4.5 Result obtained by increasing the number of clusters

Figure 4.6 A result with high number of clusters

As discussed above, we can add more details by reducing the maximum length-limit

in the last entry of the length-limit table. This way the curves are reduced in size

and give a more irregular frontier. Figure 4.7 shows results with more details. In

52

Figure 4.8, some of the detailed features are magnified. The figure demonstrates the

curve’s maximum speed’s influence on the details of the boundary of results. This is

caused by the interval which the curve’s maximum speeds are chosen from. When

the interval gets larger, some curves grow more aggressively than others, resulting in

a more irregular boundary.

(a) (b)

Figure 4.7 Results obtained by reducing the final row of the length-limit used
shown in Table 4.1 to 25. Figure 4.7(b) is the same result as the one shown in
Figure 4.2(e).

The positioning of clusters controls the overall shape directly. For example, con-

sider Figure 4.9; both are generated with same settings and number of clusters with

mere difference in surface details due to last entry in the length-limit table, but the

positioning of the clusters has completely changed the type of the result. As discussed

above, the curves to grow new clusters out of, are chosen randomly, causing varied

shapes. Figure 4.9(b) appears more elongated than Figure 4.9(a).

53

Figure 4.8 Magnifying details on the result in Figure 4.2(e)
;

54

(a) (b)

Figure 4.9 Comparison of clusters’ locations influence

Figure 4.10 shows comparisons between our results and previous works. Contrary to

our algorithm, previous works rely on rendering to add details except for Neyret [43]’s

result: Figure 4.10(d) which is produced by a simulation of particles. In our work,

both shape and details are captured in the modeling phase rather than the rendering.

Figure 4.10(a) is one of our results and Figure 4.10(b) is from Bouthors and Neyret

[6]. Our result has similar structure to theirs. Their result has small visible spheres

on larger ones. This hierarchy of spheres produces regularities at different scales. Our

result uses circles only in calculations and concept. The boundary produced by our

method has more irregularities than their result. Both results have small bumps on

large bulges. However, our result has more details on its boundary.

Figure 4.10(c) is one of our results and Figure 4.10(d) is from Neyret [43]. Although

our result has similar structure and surface details to Figure 4.10(d), it has more sharp

55

boundary details. The details on the result in Figure 4.10(d) are much more smooth

than ours in Figure 4.10(c). Sharp details can be observed on the left side of our

result in Figure 4.10(c).

Figure 4.10(e) is one of our results and Figure 4.10(f) is from Trembilski and Broßler

[63]. Their result is lit with diffuse reflection. Our method can capture smooth

features of clouds similar to theirs. We create smooth features by increasing the

length limit of curves. We can also capture shapes with more irregularity. Their

method puts spheres on top of one another to try to cover areas of the surface model

with low height. This approach reduces the variety of the shapes. Their result has

details on large scale. It has no details on small scale. In contrast, our result has

both large and small scale details. It appears round in large scale but has details in

the small scale.

56

(a) (b)

(c) (d)

(e) (f)

Figure 4.10 Comparison between our results and previous works. (b) A result
from Bouthors and Neyret [6]. (d) A result from Neyret [43]. (f) A result from
Trembilski and Broßler [63].

Our results were generated using the parameters and settings in Table 4.2.

57

Figures r ws [vmin, vmax] cmin Gmax [tmin, tmax] [gmin, gmax] nc length-limits
table

4.1(b) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,150] [250,280] 5 4.4

4.2(a) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,100] [240,270] 4 4.3

4.2(c) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,250] [250,280] 15 4.4

4.2(e) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,150] [240,250] 7 4.5

4.3(a) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 2 4.1

4.3(b) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 3 4.1

4.3(c) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 4 4.1

4.3(d) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 2 4.1

4.3(e) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 3 4.1

4.3(f) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 4 4.1

4.3(g) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 2 4.1

4.3(h) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 3 4.1

4.3(i) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 4 4.1

4.3(j) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 2 4.1

4.3(k) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 3 4.1

4.3(l) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 4 4.1

4.5(a) 0.1 1.0 [5.0,30.0] 3.0 10.0 [50,200] [240,300] 15 4.6

4.5(b) 0.1 1.0 [5.0,30.0] 3.0 10.0 [100,200] [240,300] 10 4.6

4.6 0.1 1.0 [5.0,30.0] 3.0 10.0 [50,100] [200,240] 15 4.7

4.7(a) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,150] [240,250] 7 4.5

4.9(a) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,150] [240,250] 7 4.5

4.9(b) 0.1 1.0 [5.0,30.0] 3.0 10.0 [0,150] [240,250] 7 4.1

4.10(c) 0.1 1.0 [5.0,30.0] 3.0 10.0 [50,150] [200,240] 15 4.8

4.10(e) 0.1 1.0 [2.0,25.0] 3.0 10.0 [0,50] [240,250] 2 4.9

Table 4.2 Parameters used in the simulations. nc stands for number of clusters.

58

Traveled Distance Range Maximum Length-Limit

0-50 400

50-100 100000

100-200 400

200-250 30

> 250 25

Table 4.3 One of the length-limits table used in our results

Traveled Distance Range Maximum Length-Limit

0-50 400

50-100 100000

100-200 400

200-260 50

> 260 25

Table 4.4 One of the length-limits table used in our results

Traveled Distance Range Maximum Length-Limit

0-50 400

50-150 1000

150-200 1500

> 200 25

Table 4.5 Length-limits table used in our results

59

Traveled Distance Range Maximum Length-Limit

0-50 400

50-100 1000

100-200 400

200-250 75

250-270 50

> 270 25

Table 4.6 Length-limits table used in our results

Traveled Distance Range Maximum Length-Limit

0-50 200

50-100 100000

100-150 200

> 150 30

Table 4.7 Length-limits table used in our results

Traveled Distance Range Maximum Length-Limit

0-50 200

50-100 100000

100-150 200

> 150 25

Table 4.8 Length-limits table used in our results

60

Traveled Distance Range Maximum Length-Limit

0-50 400

50-150 1000

150-200 1500

200-220 500

> 220 25

Table 4.9 Length-limits table used in our results

Chapter 5

Future Work

In the previous chapter, we presented our results and compared them to real world

clouds and volcanic ash-clouds. We also discussed variations in our results and how

our parameterization controls these variations. In this chapter, we will discuss future

work and areas that can be investigated further in the 2 dimensional representation

of snaxels and extending snaxels into 3 dimensions.

One direction for further investigation is to try to gain control over the overall

structure of the results. Curves are picked randomly to grow new clusters. Each

choice directly affects the overall structure of the result. Control over this feature

may allow for modeling categorically and therefore, only produce results of a certain

phenomenon. This would also allow a user to grow numerous cloud like structures of

not only cumulus type but other types as well. More research is needed in investigating

different approaches to control curves selection for cluster growth.

Another direction for further investigation is to try to produce results of different

sizes. Two results can have the same overall structure but differ in their size of bulges.

How much a cluster grows can have profound influence on the result. Essentially our

results are clusters being stacked up on each other. A process to control how much

they grow can impact the result. In our work, clusters grow to a limit determined

by an interval. However, future work can explore methods to manipulate the limit of

cluster’s growth in order to mimic natural-looking results more directly.

Snaxels handle self-collision and point density inherently. As a result, only imple-

mentation of a strategy which modifies their behavior, is an issue. This and their

61

62

simulated growth open up a big space for future works and investigations. One topic

that interests us is the modeling of coral reefs and similar objects. Figure 5.1 shows

an example of a coral reef. It is given that a lot of coral reefs are fractal looking but

there are many of which that have dendritic features and poses an irregular surface

with a somewhat regular structure. We believe that an investigation into this problem

can be very fruitful.

T
ra
n
sp
la
n
te
d
C
or
al

B
y
N
O
A
A
’s
N
at
io
n
al

O
ce
an

S
er
vi
ce

is
lic
en
se
d
u
n
d
er

P
D
M

1.
0
[5
6
]

Figure 5.1 Example of a coral reef; Elkhorn coral near Vega Baja, Puerto Rico.

Another topic for future investigations would be different speed schemes. As men-

tioned, snaxels’ propagation is directly influenced by the speeds that are assigned

to them. Therefore, changing the scheme with which the speed changes can affect

the contour texture. Another future plan would be implementation of snaxels’ con-

traction. In our methodology we do not allow snaxels to move backwards on the

tessellation edges. If such a process is allowed, we could investigate creating auto-

matic animations for created models.

5.1 Snaxels in 3D: Mesh Growth Using Snaxels

We have been trying different approaches to try to bring snaxels into 3 dimensions.

Appendix A describes the different approaches we pursued. Extending snaxels into

63

3D is our main goal for future work. We have made some progress on designing

an algorithm to handle the snaxels’ events. In 3D, snaxels move on a 3 dimensional

tessellation or a tetrahedral mesh. The active contour or the snake will be represented

as a mesh in 3 dimensions. For us the challenge is to be able to maintain the snaxels’

connections with each other after each event that takes place and make sure the

snaxels’ connections are conforming to the tessellation. The snaxels’ events are similar

to the ones in 2 dimensions. However, the difference is in the handling of them,

particularly birth and merge. The main challenge is in patching the holes generated.

In our future work, we plan to work on being able to successfully patch the holes and

maintain the snaxels connectivity.

Chapter 6

Conclusion

We introduced a procedural modeling algorithm for modeling cumulus clouds,

volcanic ash clouds and similar bodies in 2 dimensions. We also introduced a

sketch-based system to model such objects in 2 dimensions. Our system is based

on active contour technique, moving on a given tessellation. The contour handles

self collision and point density inherently. The resolution of the result is dependent

on the tessellation’s resolution. The growth of the contour is influenced through

manipulating the speed of each snaxel. Our method does this through a scheme

which enables mapping each snaxels’ speed to a quantity derived from relating

snaxels to the circumference of a convex shape. This will force snaxels to mimic the

convex shape and therefore, enables us to influence the growing boundary’s details.

Our method also enables simulating the snaxels’ growth by just adjusting a few

parameters.

We have also started investigating extending this technique to 3 dimensions. This

seems to be a fruitful frontier for future work with promising results. The extension

of snaxels to 3 dimension, would allow us to investigate extending our plans and

algorithms to the 3 dimensional version.

64

List of References

[1] Abraxas3d. IMG_63231, June 28, 2006. [Online; accessed April 05, 2017].

[2] Anders Sandberg. Cumulus mushroom, August 22, 2014. [Online; accessed
March 20, 2017].

[3] Matthew Beardall, Mckay Farley, Darius Ouderkirk, Jeremy Smith, Michael
Jones, and Parris K Egbert. Goblins by spheroidal weathering. In NPH, pages
7–14, 2007.

[4] Stephan Bischoff, Tobias Weyand, and Leif Kobbelt. Snakes on triangle meshes.
In Bildverarbeitung für die Medizin 2005, pages 208–212. Springer, 2005.

[5] James F Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. In Acm Siggraph Computer Graphics, volume 16, pages 21–29. ACM,
1982.

[6] Antoine Bouthors and Fabrice Neyret. Modeling clouds shape. In Eric Galin
and Marc Alexa, editors, Eurographics (short papers), pages –, Grenoble, France,
August 2004. Eurographics Association.

[7] Antoine Bouthors, Fabrice Neyret, and Sylvain Lefebvre. Real-time realistic
illumination and shading of stratiform clouds. In Eric Galin and Norishige
Chiba, editors, Eurographics Workshop on Natural Phenomena, Vienne, Aus-
tria, September 2006. Eurographics.

[8] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric Bruneton, and Cyril
Crassin. Interactive multiple anisotropic scattering in clouds. In Proceedings
of the 2008 symposium on Interactive 3D graphics and games, pages 173–182.
ACM, 2008.

[9] John Brosz, Faramarz F Samavati, and Mario Costa Sousa. Terrain synthesis
by-example. In Advances in Computer Graphics and Computer Vision, pages
58–77. Springer, 2007.

[10] Matthew T. Cook and Arvin Agah. A survey of sketch-based 3-d modeling
techniques. Interacting with Computers, 21(3):201 – 211, 2009.

[11] Giliam JP de Carpentier and Rafael Bidarra. Interactive GPU-based procedu-
ral heightfield brushes. In Proceedings of the 4th International Conference on
Foundations of Digital Games, pages 55–62. ACM, 2009.

65

66

[12] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and
Tomoyuki Nishita. A simple, efficient method for realistic animation of clouds. In
Proceedings of the 27th annual conference on computer graphics and interactive
techniques, pages 19–28. ACM Press/Addison-Wesley Publishing Co., 2000.

[13] Yoshinori Dobashi, Tomoyuki Nishita, Hideo Yamashita, and Tsuyoshi Okita.
Using metaballs to modeling and animate clouds from satellite images. The
Visual Computer, 15(9):471–482, 1999.

[14] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and
Hans Kohling Pedersen. Modeling and rendering of weathered stone. In ACM
SIGGRAPH 2006 Courses, page 4. ACM, 2006.

[15] David S Ebert. Volumetric modeling with implicit functions: A cloud is born.
In Visual Proceedings of SIGGRAPH, volume 97, page 147. Los Angeles, CA,
USA, 1997.

[16] Pantelis Elinas and Wolfgang Stürzlinger. Real-time rendering of 3d clouds.
Journal of Graphics Tools, 5(4):33–45, 2000.

[17] Dieter Finkenzeller and Jan Bender. Semantic representation of complex building
structures. In Computer Graphics and Visualization (CGV 2008)-IADIS Multi
Conference on Computer Science and Information Systems, Amsterdam, The
Netherlands, 2008.

[18] John Ambrose Fleming. Magnets and electric currents: An elementary treatise
for the use of electrical artisans and science teachers. E. & F. N. Spon; Spon &
Chamberlain, London, 1902.

[19] Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of
stochastic models. Communications of the ACM, 25(6):371–384, 1982.

[20] Geoffrey Y Gardner. Visual simulation of clouds. In Acm Siggraph Computer
Graphics, volume 19, pages 297–304. ACM, 1985.

[21] Gilad Rom. Clouds, August 04, 2013. [Online; accessed March 20, 2017].

[22] Prashant Goswami. Real-time landscape-size convective clouds simulation and
rendering. PhD thesis, INRIA, 2016.

[23] Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Real-time proce-
dural generation of ‘pseudo infinite’ cities. In Proceedings of the 1st International
Conference on Computer Graphics and Interactive Techniques in Australasia and
South East Asia, GRAPHITE ’03, pages 87–ff, New York, NY, USA, 2003. ACM.

[24] Eric Guérin, Julie Digne, Eric Galin, and Adrien Peytavie. Sparse representation
of terrains for procedural modeling. In Computer Graphics Forum, volume 35,
pages 177–187. Wiley Online Library, 2016.

[25] Mark J Harris, William V Baxter, Thorsten Scheuermann, and Anselmo Las-
tra. Simulation of cloud dynamics on graphics hardware. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages
92–101. Eurographics Association, 2003.

67

[26] Mark J Harris and Anselmo Lastra. Real-time cloud rendering. In Computer
Graphics Forum, volume 20, pages 76–85, 2001.

[27] Houssam Hnaidi, Eric Guérin, Samir Akkouche, Adrien Peytavie, and Eric Galin.
Feature based terrain generation using diffusion equation. In Computer Graphics
Forum, volume 29, pages 2179–2186. Wiley Online Library, 2010.

[28] Ian Jacobs. Cumulus congestus, March 24, 2009. [Online; accessed March 20,
2017].

[29] Jonathan E. Shaw. Tavurvur volcano, rabaul, papua new guinea, November 21,
2009. [Online; accessed March 03, 2017].

[30] Michael Kass, AndrewWitkin, and Demetri Terzopoulos. Snakes: Active contour
models. International journal of computer vision, 1(4):321–331, 1988.

[31] George Kelly and Hugh McCabe. Citygen: An interactive system for proce-
dural city generation. In Fifth International Conference on Game Design and
Technology, pages 8–16, 2007.

[32] killa uaira. tormenta cloud, December 2013. [Online; accessed April 05, 2017].

[33] Joe Kniss, Simon Premoze, Charles Hansen, and David Ebert. Interactive
translucent volume rendering and procedural modeling. In Visualization, 2002.
VIS 2002. IEEE, pages 109–116. IEEE, 2002.

[34] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Procedural
noise using sparse gabor convolution. In ACM Transactions on Graphics (TOG),
volume 28, page 54. ACM, 2009.

[35] Katrin Lang and Marc Alexa. The markov pen: online synthesis of free-hand
drawing styles. In Proceedings of the workshop on Non-Photorealistic Animation
and Rendering, pages 203–215. Eurographics Association, 2015.

[36] Jason Lawrence and Thomas Funkhouser. A painting interface for interactive
surface deformations. Graphical models, 66(6):418–438, 2004.

[37] lens-flare.de. Cumulus, August 22, 2010. [Online; accessed March 20, 2017].

[38] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108, 1995.

[39] Paul Merrell and Dinesh Manocha. Example-based curve synthesis. Computers
& Graphics, 34(4):304–311, 2010.

[40] Gavin SP Miller. The definition and rendering of terrain maps. In ACM SIG-
GRAPH Computer Graphics, volume 20, pages 39–48. ACM, 1986.

[41] R. Miyazaki, S. Yoshida, Y. Dobashi, and T. Nishita. A method for modeling
clouds based on atmospheric fluid dynamics. In Proceedings Ninth Pacific Con-
ference on Computer Graphics and Applications. Pacific Graphics 2001, pages
363–372, 2001.

68

[42] F Kenton Musgrave, Craig E Kolb, and Robert S Mace. The synthesis and
rendering of eroded fractal terrains. In ACM Siggraph Computer Graphics, vol-
ume 23, pages 41–50. ACM, 1989.

[43] Fabrice Neyret. Qualitative simulation of convective cloud formation and evolu-
tion. In Computer Animation and Simulation97, pages 113–124. Springer, 1997.

[44] Fabrice Neyret. A Phenomenological Shader for the Rendering of Cumulus
Clouds. Research Report RR-3947, INRIA, May 2000.

[45] T. Nishita and Y. Dobashi. Modeling and rendering methods of clouds. In
Proceedings. Seventh Pacific Conference on Computer Graphics and Applications
(Cat. No.PR00293), pages 218–219, 326, 1999.

[46] Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. Display of clouds
taking into account multiple anisotropic scattering and sky light. In Proceedings
of the 23rd annual conference on Computer graphics and interactive techniques,
pages 379–386. ACM, 1996.

[47] Yoav IH Parish and Pascal Müller. Procedural modeling of cities. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques,
pages 301–308. ACM, 2001.

[48] Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–
296, 1985.

[49] Adrien Peytavie, Eric Galin, Jérôme Grosjean, and Stéphane Merillou. Arches:
a framework for modeling complex terrains. In Computer Graphics Forum, vol-
ume 28, pages 457–467. Wiley Online Library, 2009.

[50] Brennan Rusnell, David Mould, and Mark Eramian. Feature-rich distance-based
terrain synthesis. The Visual Computer, 25(5):573–579, 2009.

[51] Joshua Schpok, Joseph Simons, David S Ebert, and Charles Hansen. A real-
time cloud modeling, rendering, and animation system. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
160–166. Eurographics Association, 2003.

[52] Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of com-
puter graphics. CRC Press, 2015.

[53] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. A survey
on procedural modelling for virtual worlds. In Computer Graphics Forum, vol-
ume 33, pages 31–50. Wiley Online Library, 2014.

[54] Karin Sobottka and Ioannis Pitas. Segmentation and tracking of faces in color
images. In Automatic Face and Gesture Recognition, 1996., Proceedings of the
Second International Conference on, pages 236–241. IEEE, 1996.

[55] Anders Soderlund. Procedural modeling of rocks, 2015.

[56] Söring. Eyjafjallajkull eruption (image 1), May 8, 2010. [Online; accessed March
23, 2017].

69

[57] Söring. Eyjafjallajkull eruption (image 2), May 8, 2010. [Online; accessed April
05, 2017].

[58] Söring. Eyjafjallajkull eruption (image 3), May 8, 2010. [Online; accessed April
05, 2017].

[59] Romain Soulié, Stéphane Mérillou, Olivier Terraz, and Djamchid Ghazanfarpour.
Modeling and rendering of heterogeneous granular materials: granite application.
In Computer Graphics Forum, volume 26, pages 66–79. Wiley Online Library,
2007.

[60] Szymon Stachniak and Wolfgang Stuerzlinger. An algorithm for automated frac-
tal terrain deformation. Computer Graphics and Artificial Intelligence, 1:64–76,
2005.

[61] Jos Stam. Stochastic rendering of density fields. In Proceedings of Graphics
Interface, pages 51–58, Banff, Alberta, May 1994.

[62] Marc Stiver, Andrew Baker, Adam Runions, and Faramarz Samavati. Sketch
based volumetric clouds. In International Symposium on Smart Graphics, pages
1–12. Springer, 2010.

[63] Andrzej Trembilski and Andreas Broßler. Surface-based efficient cloud visuali-
sation for animation applications. In WSCG, pages 453–460. Citeseer, 2002.

[64] Jamie Wither, Antoine Bouthors, and Marie-Paule Cani. Rapid sketch modeling
of clouds. In Eurographics Workshop on Sketch-Based Interfaces and Modeling
(SBIM), pages 113–118. Eurographics Association, 2008.

[65] Steven Worley. A cellular texture basis function. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, pages 291–
294. ACM, 1996.

[66] Tatsuo Yanagita and Kunihiko Kaneko. Modeling and characterization of cloud
dynamics. Physical Review Letters, 78(22):4297, 1997.

[67] H. Zhou, J. Sun, G. Turk, and J. M. Rehg. Terrain synthesis from digital elevation
models. IEEE Transactions on Visualization and Computer Graphics, 13(4):834–
848, July 2007.

Appendix A

Snaxels in 3D: Mesh Growth Using

Snaxels

In previous chapters we presented our algorithm and results on modeling cumulus

clouds and volcanic ash-cloud and similar bodies by using snaxels and growing them

on a tessellation in 2 dimensions. Perhaps our approach can be used to grow objects

in 3 dimensions. But to investigate that, first we need to be able to represent and

handle growth of snaxels in 3 dimensions. In this chapter we will describe what we

have investigated so far in growing snaxels in 3 dimensions. We will describe the

obstacles we faced by the different approaches we used and present them for future

investigation and researchers.

First we are going to discuss the needed elements to transition from 2 dimensional

representation of snaxels to 3 dimensional. We will describe the differences and where

the difficulties are for handling the events. Next we will present our approaches which

we tried and discuss them.

A.1 Transition

Snaxels propagate on a triangulation in 2 dimension. In 3 dimension it turns

into a tetrahedral tessellation and the growing boundary is a water-tight mesh. one

dimension lesser than the tessellation it grows on. The growing mesh needs the same

constraints as the 2 dimensional version. As discussed, snaxels propagate through

the edges of the tessellation and the connections between snaxels will be inside or on

the exterior surface of each tetra or tessellation shape. Figure A.1 shows the different

70

71

types of connections allowed between snaxels. These connections can be categorized

as three different types depending where they lie on the host tetra. As discussed in

chapter 3, snaxels go through some events as they propagate through the tessellation.

In 3 dimensions, the snaxels go through similar events to the ones in 2 dimensions as

discussed in chapter 3. However birth and merge require re-stitching and therefore,

differ with the 2 dimensional version in how they are handled.

Figure A.2 shows a part of the mesh, where a snaxel on the mesh goes through a

birth event. The color green indicates the outside surface of the mesh and the color red

indicates the inside surface of the mesh. Birth event, as shown in the figure, creates

a cap of children snaxels. The cap is a segment of the mesh formed by connecting

the children born in the birth event. The cap is generated by triangulating each 3

children residing on a tetra. And since there is always three children or less on a tetra

after a birth event, this action will result in the creation of the cap. With the parent

removed and the children connected, two rims are created which need to be stitched

to one another. One is the children on the boundary of the cap, and the other is the

rim snaxels of the rest of the mesh, which were previously connected to the parent

snaxel. The handling of this event is finished by connecting the snaxels of the two

rims.

However re-stitching after birth is simply connecting children on the boundary of

the cap to rim snaxels. The difficulty is in re-stitching after a merge event. We need

to be able to identify the type of the hole generated and successfully patch the hole

to complete the water tight mesh. Since a merge event has more variety due to the

number and position of neighboring snaxels of the two snaxels involved, the handling

of the event becomes more challenging. In fact, the re-stitching needed in a birth

event can also be seen after a merge event. Therefore, by focusing on handling a

merge event, the birth event is also handled. In the next section we will describe our

approaches to tackle this.

72

(a) A connection lying on a triangular face of
the host tetra

(b) A connection lying on an edge of the host
tetra

(c) A connection going through the host tetra

Figure A.1 Different types of connections between snaxels inside tetrahedras. The
dashed edges indicate that they are occluded.

73

(a) Before the event (b) After the event

Figure A.2 Before and after a birth event on a mesh. The mesh before the birth
event (a), the parent is removed and the children have formed a cap (b). Note
that only a part of the mesh is visualized.

A.2 Case Based Approach

As mentioned in the previous section, in the event of a merge, a re-stitching of the

neighboring snaxels of the two snaxels involved in the merge is needed. To approach

this problem, we first analyzed each tetra of the neighborhood of the event. Figure A.3

show the top view of the cluster of tetras in the neighborhood of a merge event which

is about to happen. As illustrated, the cluster of tetras are captured by taking all the

tetras sharing the edge on which the merge is happening. The relationship between

the snaxels connected to the merging snaxels can be of three categories only; those

connected to the first snaxel, those connected to the second snaxel and those which

are shared and connected to both. They are denoted ’N1’, ’N2’ and ’S’ respectively.

One approach to stitching is to analyze each tetra by the position of snaxels on

its edges and their relationship with the snaxels which merged with one another.

However, the relationships between the tetras is largely ignored in this approach.

Even if we account for the relationships the space of varieties of type of tetras and

how they should be handled simply just gets larger. This space is large enough

without accounting for the relationships. Another issue is the number of ways each

tetra can be stitched. Some tetras can be stitched in separate ways. For example,

74

Figure A.3 Before a merge event. The color green indicates the outside surface of
the mesh and the color red indicates the inside surface of the mesh.

75

Figure A.4 shows a tetra in which two snaxels marked as squares, merge with

one another and leave behind a structure with a few boundary edges which need

stitching. The figures A.5(a) and A.5(b) illustrate two possibilities for stitching.

(a) (b)

Figure A.4 Before and after a merge event inside a tetra

(a) (b)

Figure A.5 Example of a re-stitching problem

76

A.3 Hole Patching Approach

The issues discussed in the previous section, lead us to analyze the hole generated

in the mesh instead of each tetra in the cluster around the edge on which the

merge event has taken place. Once the merging snaxels are removed from the mesh,

depending on the connection between them, one or two holes are generated on the

surface of the mesh. Figure A.6 shows the same merge event happening in Figure

A.3 in two possible scenarios. Consider each disk to represent one of the merging

snaxel plus the triangles connected to it. This makes the circumference of the disk to

be the neighboring snaxels of the merging snaxel. As shown, there are two possible

scenarios. One scenario shown in Figure A.6(a) is when the two merging snaxels

do not share any neighbors. This scenario also indicates that the merging snaxels

are not connected to one another. The other scenario shown in Figure A.6(b) is

when the merging snaxels share some of their neighboring snaxels. In this case they

may be connected to each other. Figure A.7 is an attempt to illustrate two different

holes generated in the mesh after the removal of merging snaxels in Figure A.6. Red

dashed lines and red and green colors indicate the surface of the mesh.

(a) (b)

Figure A.6 Two different scenarios for a merge event. The color green indicates
the outside surface of the mesh and the color red indicates the inside surface
of the mesh. Merging snaxels are illustrated by yellow squares.

77

(a) (b)

Figure A.7 Two different types of holes. The color green indicates the outside
surface of the mesh and the color red indicates the inside surface of the mesh.

Since the hole shown in Figure A.7(a) is convertible to the one shown in Figure

A.7(b) by stitching just one or two snaxels from each rim to one another, our focus is

to stitch the one shown in Figure A.7(b) by forming a patch shown in Figure A.8. The

color yellow indicates the outside surface of the patch and the color purple indicates

the inside surface of the patch. To form the patch, we want to pursue an incremental

approach to stitching. We start by a shared neighbor of the merging snaxels and

using the snaxels at the other end of its boundary edges. First we perform a test to

see if all three of them can form a triangle. That means they should all be inside

a tetra and should not be connected to each other. Then we proceed to stitch all

three together, forming a new triangle and thus forming a new boundary edge. After

that, we take the newly formed boundary edge and check to see if we can repeat the

process on either of its snaxels. By incrementally repeating this process, we plan to

stitch the entire hole.

The approach discussed above is supposed to stitch a given hole. However this

implies that the hole does not already have snaxels on its boundary which are con-

nected to one another. If there was already snaxels connected to one another, the

incremental stitching algorithm would not be able to complete the stitching. Since

78

two already connected snaxels means that the algorithm will not be able to fit in

a patch. If the two snaxels which share an edge were to be used in forming a new

triangle, it would violate the mesh’s structure. Our focus is to capture such scenarios

and handle them properly so that the stitching can be completed.

(a) (b)

Figure A.8 Stitched holes with a patch.

