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Abstract. Ford and Hayes suggest that rather than build independent AI 
technologies, we frame AI as a human/machine partnership, where AI 
“amplifies, rather than replaces human intellectual ability”. We used their 
perspective to build a smart mixed initiative edge detection tool and believe this 
approach will be particularly useful in building intelligent graphical tools. 

Introduction 

Ken Ford and Patrick Hayes have described a new way to think about intelligent 
machines called cognitive prostheses [1,2,3]. Cognitive prostheses are a constructive 
solution to the problems they described earlier with Turing-Test AI [3]. Paraphrasing, 
the premise of cognitive prostheses is that the human and the computer should be 
linked together as equal partners in a problem solving system, with the computer 
component amplifying, but not replacing, human intellectual abilities, as eyeglasses 
improve a human’s vision system. 

This idea is has similarities to, but is different from adaptive software, also popular 
in AI subareas as AI and Education and Intelligent Tutoring Systems (e.g., intelligent 
Help tools). The two subareas are similar in that both use reactive AI, where the 
software attempts to respond to the user in real time. Adapative software forms a user 
model and adjusts its performance in order to provide assistance as unintrusively as 
possible. The difference between these two approaches is that adaptive software takes 
the initiative to give help to the user, whereas in the cognitive prosthetic, the user 
takes the initiative to give help to the software. 

Adaptive software begins with a reasonable initial user model, which is 
subsequently modified by monitoring the user’s performance mostly through the 
narrow bandwidth of keystrokes and mouse movements. From this limited 
information, the software must construct a diagnostic theory to explain any buggy 
behaviour and suggest a remedy. Our cognitive prostheses in the CG modeling 
domain reverse the roles of human and software. The human monitors the software’s 
performance, through the high bandwidth of a graphical display, determines when the 
software’s performance is buggy, and quickly provides a remedy through the low 
bandwidth of mouse gestures and keystrokes. 
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McCalla [9] describes the user modeling problem in ITS as AI-complete—that is, a 
solution to user modeling will be a key to the solution to all of AI. A successful and 
complete intelligent tutoring system will be a superior intelligence in some sense: the 
software must have mastery of deep knowledge of the subject domain, it must be able 
to use this deep knowledge to infer the user’s performance errors from mere 
keystrokes, and it must then formulate a plan to guide the user not only to the right 
answer, but, in doing so, help the user gain a deep understanding of the answer. This 
approach seems to simplify the AI challenge. 

The cognitive prosthetic framework changes the goals of AI by viewing the human 
and the software as equal, but different, partners in a problem solving partnership. 
The new artificial intelligence is the synergistic mind that from the software/brain 
combination. (We advise the reader that we overload the term artificial intelligence in 
this article. Ford and Hayes see cognitive prostheses as a new way to think of AI in 
general, but it is also possible to see them as a different way to do AI.) 

Ford and Hayes [3] speculate that that the theory of cognitive prostheses is 
(literally) a more productive way to look at Artificial Intelligence than Turing Test AI 
is, which contemplates machines that independently perform intellectual activities as 
well as humans. Not only is the precise meaning of the test unclear, Ford and Hayes 
argue convincingly that Turing Test AI makes incremental progress difficult to 
measure. Not only is the test sensitive to who might be chosen as the judge, a machine 
that behaves like a human 30% of the time would be remarkable but would never fool 
any credible judge. Ford and Hayes conclude “… if we abandon the Turing Test 
vision, the goal naturally shifts from making artificial superhumans which can replace 
us, to making superhumanly intelligent artifacts which we can use to amplify and 
support our own cognitive abilities, just as people use hydraulic power to amplify 
their muscular abilities. This is in fact occurring, of course … our point here is only to 
emphasize how different this goal is from the one that Turing left us with.” [3] 

Although the preceding quote dates back to 1995, and Ford and Hayes have spoken 
about cognitive prostheses subsequently, there seem to be few details published on the 
theory and practice of cognitive prostheses. (An exception is the weather forecasting 
system STORM-LK. [4]) Nor has the idea of cognitive prosthetic hit the AI 
mainstream. For instance, Mackworth [8] does not include anything similar in a 
recent list of nine definitions of AI. This, we think, is due to the fact that, like 
computer graphics, the proof of a cognitive prosthetic is in the implementation, and 
therefore requires both a commitment prior to the development of the software and a 
good deal of development time.  

We have had some success using this approach to build smart graphics tools in a 
modeling domain with immediate application. The results have been reported to the 
Computer Graphics/HCI community [12], but with only passing mention made of the 
new cognitive prosthetic paradigm. Here we wish to concentrate on the contributions 
to both to the theory and practice of cognitive prostheses, and the potential for success 
using this approach more widely, particularly in the construction of smart graphics 
tools by exploiting the incredible computing power of the human eye/brain 
combination.  

Our experience suggests that successful cognitive prostheses should have the 
following features: 
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1 A cognitive prosthetic should be as easy to use as a traditional tool, but should 
improve the user’s overall productivity. This does not completely solve the 
problem of how to measure progress, but users might be able to report whether 
the new tool seemed more productive. 

2 The software component of a cognitive prosthetic should gracefully degrade as 
needed, probably all the way to some baseline algorithm. By baseline algorithm, 
we mean some algorithm that, from the perspective of a typical user, is well 
understood. Baselines may change with time. 

3 In production environments, users should not feel that they are must 
occasionally work against an intelligent tool. A cognitive prosthetic should not 
be intrusive, nor should the user have to second guess the algorithm. 

4 As software components improve, cognitive prostheses evolve, making older 
prostheses extinct.  

 
The above features excludes no existing AI tradition so that foundational theories of 
AI, theorem provers, vision systems, even Turing Test AIs can develop independently 
with this stream. In this respect, we differ from Ford and Hayes by a quibble—we see 
the whole as greater than the sum of the parts. To borrow from the experience of logic 
programming: logic programming hoped that software could be divided into the 
narrow domain-specific aspect of casting problem knowledge into domain axioms 
(knowledge representations), and a general aspect of building an all-purpose control 
structure (automated theorem proving). Kowalski [5] summed this up with the 
equation “Algorithms = Logic + Control” and there was a great deal of sentiment that 
the two terms of Kowalski’s equation could develop independently. In the context of 
Kowalski’s equation, we see the task of cognitive prostheses as being to that of 
contemplating how best to implement the ‘+’ operator.  

Before moving on to specific CG based cognitive prostheses, an analogy may 
clarify the relationship between software and human in a cognitive prosthetic. 

An analogy from the evolution of typesetting 

The evolution of typesetting provides examples of frustrating smart tools that violate 
the above principles of good cognitive prostheses. The analogy should be meaningful 
to computer scientists, of whom many have done their own typesetting for several 
decades. Smart typesetters generate a range of complaints; two common (and related) 
ones are about hyphenation and layout.  

Good hyphenation requires both literacy and aesthetic ability. In Gutenburg’s era, 
typesetting began a craft overseen by an individual compositor who assembled type 
from a fixed stock of moveable letters into a frame. The invention of the linotype in 
the late 19th century fuelled the spread of newspapers and also created an interesting 
division of labour. The linotype was a big, complicated, hot, and noisy piece of 
machinery. A linotype operator had to be strong enough to pitch bars of lead and 
mount fonts (large frames of brass matrices), and literate enough to read and 
hyphenate continuous news text. The linotype operator would create the type, ink it, 
and print a “proof” by pressing blank paper against the type (hence the name 
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“letterpress”), which would be checked for accuracy by an editor or proofreader, who 
would mark corrections on the proof and send them back to the typesetter. The noise, 
inky grime, and heat of the printshop created a division of labour between those who 
composed the news and those who cast it into lead. However, looking at this division 
from the perspective of cognitive prosthetics, it can be said that both tasks required a 
good deal of intelligence and education for that day, with the editor ultimately 
controlling the appearance of the printed page. With both agents being human, 
communication in either direction was efficient. 
 Offset printing technology replaced letterpress in the mid-20th century and 
phototypesetting put the linotypesetter out of work. Ultimately, the computer became 
the machine of choice for typesetting.  
 Computer typesetting passed through at least two generations of hyphenation 
algorithms. The first generation, rule-based algorithms, created a division of labour 
similar to the linotype era: the human, like the editor of the previous era, composed 
text; the machine decided layout, using a small rule base and decision structure. 
However, compared to communication between editor and linotypesetter, 
communication between human and algorithm was almost nonexistent. The results 
were frustrating, with humans even rewriting language to eliminate awkward 
typesetting artifacts. (Hyphenation was not the only problem. One of the great stories 
of computer science is that Donald abandoned his series on fundamental algorithms 
for ten years to build TeX after being appalled at the quality of the computer typeset 
proofs.) An early improvement was the phantom “discretionary hyphen”, used by 
typists to indicate preferred hyphenations to the computer. However, in this setting, 
humans received low bandwidth communication from the computer, and frustration 
with typesetting was comparable to that experienced by users of modern word 
processors trying to produce a document with many diagrams. 
 Cheap memory made dictionary-based hyphenation algorithms possible where the 
user can even expand the computer’s dictionary. Hyphenation is no longer a 
significant concern, at least as compared to the problem of layout of text that includes 
figures,  
 The preceding is idealized, but shows how responsibility for an intelligent task may 
migrate among intelligences as technology evolves. Within computing, and especially 
graphics, there are a wide range of layout problems broadly comparable to 
typesetting—layout of web pages, layout of 2D and 3D graphics scenes, planning of 
animations, tessellation of contours—that could divide difficult decisions between 
humans and software. Moreover, the assignment of a task to a human or machine 
intelligence might change as different components evolve unevenly. 

To avoid repeating some of the mistakes described above, it is eye-opening to think 
of a cognitive prosthetic in terms of a control system, but with a human acting as a 
sensor in the feedback loop, as well as user.  Many AI technologies were premised on 
the hope that it might be possible to fully axiomatize interesting domains and 
subsequently find goals by reasoning, as in logic programming, and blocks-world 
planners. This resulted in the “knowledge bottleneck”. 
 Reactive planners addressed the problem of complete knowledge by letting the 
algorithm use sensors to learn about a changing landscape and adjust plans 
accordingly. This helped with the knowledge bottleneck, but introduced the problem 
of reaction time [7]. The following shows a block diagram for a cognitive prosthetic. 
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The bottom half is the user; the top the AI and software. Together, they form a 
cognitive prosthetic. In the cognitive prosthetic we have produced, the human is the 
sensor. Moreover, in smart graphics, it is the best possible choice to make the human 
eye/brain combination the sensor. This makes it possible for the human to provide the 
necessary response time for a useful product. 

Our domain: 3D Models from Contour Data 

Tessellating contour data traced from serially sectioned data images is a common way 
to build accurate anatomical models [13]. Typically, an anatomist traces outlines 
(contours) of an anatomical object from cross-sections, e.g., the Visible Human data 
set, which contains sections of male and female cadavers at 1mm and 0.33mm slices 
respectively.  

Contour tracing can be tedious, time-consuming, and expensive.  It must be done 
by persons with enough advanced medical or anatomical knowledge to identify subtle 
features of the target object in a range of image types. As well, because of the needed 
accuracy, the user must carefully input a large number of points.  
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This is an ideal problem for a machine, in particular, an AI solution, and a variety 
of segmentation/edge detection techniques have been deployed. However, in the 
absence of perfect solutions, smart solutions have a problem: the user must, a 
posteriori, both find and correct the smart algorithm’s errors. It may well be that the 
total cost of using a smart algorithm plus the cost of finding and correcting its errors, 
is greater than the cost of manually tracing the contours. Users anecdotally report 
similar frustrations with other smart tools.  

A literature search revealed a tool called Intelligent Scissors (IS)[11] close to what 
we had in mind, and similar to snakes [16] for contour detection. With IS, a user 
initially selects a seed pixel in an image with the mouse, normally a point on an object 
boundary. As the user drags the mouse in the general direction of the boundary, the 
curve from seed point to mouse cursor “snaps” to the boundary. This satisfies part the 
first of our four criterion, that the smart tool is as easy to use as a traditional tool, by 
making the performance imitate, as closely as possible, the snap line tool of familiar 
painting programs. Later we address productivity. 

To find a boundary to snap to, IS uses a variety of traditional vision techniques as 
part of a multiattribute cost function. For instance, Laplacian zero-crossing and 
gradient magnitude favour pixels of similar intensity, while gradient direction chooses 
against sharp turns. Sooner or later, the algorithm runs afoul of the user’s intended 
contour. At this point, the tool must be recalibrated to account for the new local 
features. In IS, this is costly because it requires recomputing parts of the cost function 
over every pixel in the image. In a series of papers, Barrett and Mortenson explore 
other cost function attributes, methods of minimizing the recalibration cost, as well as 
machine learning techniques that make intelligent guesses about when and where to 
recalibrate the algorithm based on an idea of  “cooling” pixels on the path that have 
persisted for the longest time. A pixel’s persistence is a combination of how many 
times it has appeared on some path from the seed point to the mouse, and how many 

milliseconds it has been on one of 
these paths. The intuition is that the 
user, while drawing the scene will 
move the mouse in hopes of selecting 
the ‘best’ path. Barrett and 
Mortenson’s results [11] are very 
impressive. The depth of their work 
satisfies us that this particular problem 
remains clearly in AI’s domain.  

In our own implementation, we 
chose a different approach to the 
correction mechanism, based on the 
assumption that, for the immediate 
future, there remain many occasions 
when even a very sophisticated edge 
detection algorithm will eventually 
make mistakes. Figure 1 gives an 
example of real contour data from the 
Virtual Human Embryo project [14], 
for which it would be difficult to build 

Figure 1. Contour data from the  
virtual human embryo project.
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a highly reliable smart outlining tool. Although the exterior outlines are clear, interior 
contours might best be done with a manual tool. Somewhere in between the extremes 
of reasonably good data and very noisy data, it seems reasonable to expect that Even 
another, very fast person trying to trace your intended contour might eventually make 
a choice different from yours.  

With a cognitive prosthetic, the problem is not making a bad decision, which is 
unavoidable, but recovering from it quickly. What makes the problem challenging is 
finding a way to let the edge detection algorithm to do its best to construct the 
intended contour using using pixel-based information, but still letting the user, upon 
observing the image and the traced contour, undo any error the AI makes and either 
recalibrate the edge detection tool, or override it. 

We tried several approaches including using the user’s mouse motions as 
recalibration cues, but this method seemed to be overly sensitive to vagaries of the 
user’s hand movements. Adding a language of mouse motions did not seem to be a 
promising approach. We also incorporated a visual feedback tool that monitored 
feature calculations into the user interface, hoping that 1) the feedback graph might 
reveal some analytic property of error features that could be exploited, and 2) perhaps 
aspects of the monitored information would be translatable to something useful to the 
user.  

The breakthrough was realizing that the dynamically drawn contour was itself, to a 
typical user, the most informative monitor. Our final solution was a visual cue called 
the leash. Figure 2 shows two details that illustrate the leash. The contour is rendered 
in three differently colored segments indicating 1) pixels that the algorithm believes 
are certainly on the contour, 2) pixels that are probably on the contour, and 3) pixels 
possibly (or not) on the contour. Following Barrett and Mortenson, the first segment is 
colored blue indicating cooling. The last two segments give the viewer the impression 
of a “leash” “leading” the new contour growth. The idea of the leash is inspired partly 
by Kyburg [6] who classifies knowledge as logical certainty, practical certainty, and 
probability. The user can use a mouse gesture to tell the program when to promote 
probable pixels to certain. If this is not possible, the user can drop into fully manual 
mode. This satisfies the second of the four criteria—the cognitive prosthetic 
gracefully degrades to a baseline algorithm. 

The visual cues greatly reduce the cost of correcting the errors in the contours, 
since the user sees them as they arise. This satisfies our third criterion. Users do not 
have to, a posteriori, go back and undo the errors made by the smart algorithm, which 
might, in some cases, take longer than a fully manual approach. This removes the 
problem of reaction time [6] from the algorithm, and allocates responsibility to the 
human, who is well-suited to seeing when the new contour is going astray, thanks to 
he visual cues given by the leash, that advise both where and when to recalibrate. 
Thus, there is no marginal cost for fixing the error, since the worst case scenario is the 
same as tracing manually. This suggests that the productivity requirement of the first 
criterion is also met. 
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The cognitive prosthetic is not simply a complex piece of software. It may include 

its own cognitive prostheses. For instance, the leash performs a calculation for 
optimal leash length [12], which might also be overruled or adjusted by the user.  

Although we diverged from Barrett and Mortenson by assuming that for the short 
term, practical smart outlining tools will need to be overruled by a human user, this 
architecture is designed so that the AI may become arbitrarily smart—the user will 
simply have to override it less often. This satisfies our fourth and last criterion.  

Thus, the leash appears to satisfy all four criteria. It results in greater productivity 
because the user can easily correct errors as they arise, rather than having to hunt and 
find errors created by segmentation based algorithms. The leash gracefully degrades 
to the familiar snap tool in areas where image noise confuses the edge detection logic. 
The third criterion reduces the user’s sense of fighting the tool and lastly, the design 
makes evolution of the whole tool very straightforward—if edge detection tools get 
faster and better, the functionality of the leash may become vestigial.  

Future Work 

We have begun investigation of the problem of contour alignment. Contours can be 
misaligned for a variety of reasons. A possible cause is misalignment of the image 
slices. Figure 3(a) illustrates misalignment in the Visible Male data. Contour 
misalignment results in the appearance of ridges or strata on the surface of the 3D 
object. Like contour drawing, alignment is a repetitive job that we would like to give 
to a machine, but it requires a good deal of intelligence. The transverse image in 
Figure 3(b) was created by selecting the same row from consecutive slices of the 
Visible Male. Figure 3(b) shows the result of applying an alignment correction 
algorithm. (The software introduced other unrelated artifacts.) 

 

Figure 2. Two 
details illustrating the 
leash. Pixels known to 
be on the edge are 
colored blue. White 
indicates pixels 
probably on the edge 
and yellow indicates 
pixels the software is 
unsure about. Notice 
some yellow pixels are 
on the edge. 
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Figure 3. (a) (Left) Unaligned visible male data. (b) Same data after alignment. 

 
The alignment algorithm minimizes the sum of differences of Euclidean distances of 
RGB values in consecutive slices by changing the image alignment. The algorithm 
worked well on the Visible Male, but there are problems. First and most obviously, 
the algorithm will eliminate skewing, even where the target object is supposed to be 
skewed. Secondly, this technique did not help with the virtual embryo data. Because 
of the domain knowledge needed, purely vision-based algorithms will be prone to 
error. This presents new challenges because it is not clear at this point that the lessons 
of the leash will generalize to three dimensions. 

Summary and Conclusions 

Our current work in smart graphics tools builds upon and extends the theory of 
cognitive prostheses as first articulated by Ford and Hayes as a human/machine 
synergy, and we have suggested four criteria for a successful cognitive prosthetic, at 
least in the area of smart graphics. The idea of the leash is a particularly crisp 
realization of this framework because the AI edge detection subsystem, the contour 
drawing tool and the leash interface are clearly separated. We also suggest that the 
area of smart graphics is particularly suited to this paradigm because of the high 
bandwidth with which a graphics program can communicate visibly with a human. 
Finally, we have also suggested that the human and the software together form a mind 
in the philosophical sense, creating a new kind of artificial mind.  
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