
Continuous Line Drawings On Dendrites
Hua Li

hli1@connect.carleton.ca
David Mould

mould@scs.carleton.ca

Carleton University, Ottawa, Canada

Abstract— Continuous line drawing (CLD) is a drawing style
where a picture consists of a single long closed line without self
intersection. We present an algorithm for constructing CLDs
from input images. We maintain the connectivity of the line
through a tree generated by path finding with consideration of
the key features for a given image. A branching tree structure
is first grown incrementally by selecting pixels by a cost func-
tion, relating to both the tone map and an importance map. Af-
ter labeling each branch, an artificial wall is then constructed
through a two-stage labeling propagation process to produce a
single boundary, interpreted as the final CLD. Our method is
effective and automatic, and provides some opportunities for
variations.

Index Terms— Computer Graphics [I.3.3]: Picture/Image
Generation—Line and curve generation; Computer Graphics
[I.3.3]: Picture/Image Generation—Display algorithms; Com-
puter Graphics [I.3.m]: Miscellaneous—visual arts.

I. INTRODUCTION

Continuous line drawing can be described as follows: when
drawing a picture on paper with a pen, the pen will never
leave the paper until the picture is finished. It is sometimes
given as a drawing challenge to young children not yet good
at holding a pen; even in advanced drawing classes, artists
use this technique for contouring or sketching practice. We
specify this task in this paper as the problem of creating a
final picture that consists of a single non-self-intersecting
closed curve. In addition, we want the strokes obtained
from the CLD algorithm to be meaningful. The perfect CLD
should preserve the key features of an image, including both
tones and edges.

Previously, algorithmic CLD art was created by solving
the traveling salesman problem (TSP) [5, 10]. Given a set of
locations, the salesman is required to visit each one, once
and only once (Hamiltonian cycle). The graph-theoretic
form is, given an undirected graph with weighted edges,
find the lowest-cost Hamiltonian cycle. It is a notorious
NP-Complete problem. TSP art involves placing locations
over the image plane with density proportional to image
darkness, and then finding the Hamiltonian cycle; to im-
prove the appearance of the final image, object boundaries
may be selected manually and no nodes placed on the exte-
rior. However, from the view of non-photorealistic render-
ing [8, 19, 9], applying TSP to the CLD produces an over-
constrained problem: every TSP tour gives a CLD, but not
every CLD is a TSP tour. Some researchers [14, 15, 23, 24]
created CLDs in the form of mazes, specifically unicursal

mazes. Maze creation usually relied on interactive user as-
sistance to have good results.

We argue that TSP-based approaches are too costly and
are difficult to modify to effectively demonstrate image fea-
tures, but we do not want to impose demands on the user
and prefer an entirely automatic method. In this paper, we
propose a new method for building a CLD in image space
by path finding followed by a labeling propagation process.
Unlike previous methods that concentrated on tone match-
ing, our method respects the image structure as well. Our
approach involves developing a single closed loop from a
tree structure; the tree is created by path finding among a
structure-aware point distribution. A depth-first traversal of
the tree automatically generates a cycle, which we can in-
terpret as a CLD. The awareness of structure is maintained
throughout the entire CLD generation process. Figure 1
shows our two examples.

The paper is organized as follows. Section II. mentions
existing methods for constructing the CLD. In Section III.,
we propose our main algorithm including tree construction,
labeling, and propagation. We next give some discussion in
Section IV. before concluding in Section VI..

II. RELATED WORK

The earliest work on CLDs involved solving a the Travel-
ing Salesman Problem (TSP) [17, 2], which is defined as
finding a minimum-cost tour in a graph by which a sales-
man visits each node once and returns to the origin. Ex-
act methods are feasible only for very small numbers of
nodes. For large numbers of nodes, the most successful algo-
rithms are based on tricky heuristics, such as nearest neigh-
bors and tour improvements. In general, such approximate
methods cannot guarantee optimality or correct connectiv-
ity, but the quality of a close-to-optimal tour is satisfac-
tory for CLD applications. Some researchers [4, 10, 5] em-
ployed the existing Concorde solver to solve the TSP in or-
der to construct different CLDs. The quality of the resulting
CLDs to some degree depends on the quality of the heuris-
tics. The Concorde solver [1] implements the Lin-Kernighan
heuristic [17]. Bosch did mention that the Nearest-Neighbor
heuristic may produce annoying self-crossings. Though the
LK algorithm based on k-opt has an average running time
of order n2.2 and it is very difficult to get an implementa-
tion done, it has very high quality, close-to-optimum, within
2% of the Held-Harp lower bound. Though current results



(a) Original image (b) Continuous line drawing (c) Original image (d) Macaroni art

Figure 1: Continuous line drawings.

from TSP art are fascinating, if the goal is the generation of a
CLD, we suggest a less computationally intensive approach.

Existing TSP-based methods concentrated on the tone of
an image. The big difference between previous approaches
is in the generation of starting points to represent an image,
another key factor which affects the quality of a CLD. Ini-
tial results by Bosch and Herman [5] were based on halfton-
ing [6]. Images are partitioned into grids, and the density of
points for each grid is determined by the average greyscale
intensity. A similar idea by Kaplan and Bosch [10] uses
ordered dithering [3]. The points in each grid are not uni-
formly placed; rather, the placement of each point is based
on a fixed patterned matrix which expresses the different in-
tensity. The patterned matrix brings more variable visual-
ization of a CLD, not just a connected segments or a spline
curve. However, it causes artifacts from the pattern also. A
more sophisticated method is based on Secord’s weighted
Voronoi stippling [16] to place stipples on the image. In Sec-
ord’s method, an initial stippling distribution is iteratively
improved by relaxation. Since Secord’s method seeks to
place stipples evenly in space, the outcome from stippling
is more appealing than those from other placement methods.

Thanks to the maturity of the approach, TSP-based meth-
ods can produce very good results. But from another view-
point, the well-defined problem costs us flexibility for our
CLDs. Adding local control into the implementation is very
difficult. The initial configuration for placing stipples almost
determines the degree of the CLD quality. Image content
sometimes was aided by manually segmenting objects. We
argue that optimal tours may not be that important for CLD
creation.

Results from Kaplan and Bosch [10] drawing the line with
different types of curves are very interesting. Pedersen and
Singh [14] proposed a method to build aesthetic labyrinths
or mazes. The maze is parametrized by a set of piecewise
curves. The curves evolve iteratively under local attraction-
repulsion forces. The advantage of this method is to provide
users local control over the maze structure and appearance
as well as allowing multiple curves to evolve over space and

time. The generation of CLDs is one possible result from
the curve evolution, obtained by starting with a single closed
non-self-intersecting curve. Parameters are set manually in
user-defined regions. A pattern library provides users an op-
tion to choose different patterns for each region. However,
the computation of the attraction-repulsion forces is very
costly; also, good results depend on user intervention, while
we intend to provide a fully automatic method.

More recently Wong and Takahashi generated continuous
line illustrations [21] from a given input image. But they
allowed self intersections, which we want to avoid. Xing et
al. proposed the concept of surface filling curves [22] and
can convert a mesh surface into a single closed 3D curve that
follows the mesh surface. Garigipati and Akleman [7] also
proposed an extension to subdivision methods to create a 3D
closed curve on a mesh. However, the resulting 3D single
curve did not deal with image abstraction and thus it is a
different problem from ours.

The CLD in the field of maze generation [15] is called a
unicursal maze, or a labyrinth in general: a unicursal maze is
one without any junctions. The generation is different from
the previous evolution-based approach. Roughly speaking,
instead of evolving the curves, it directly builds the surround-
ing walls. The interior space, or the path of the maze, will be
carved into a unicursal maze. This type of maze is built on
the previous mazes by transforming the dead ends or cycles
into a u-turn passage after adding bisections for passages. In
this paper, we adapt this idea combined with path finding to
generate our CLD.

Path finding is a process to find a path by minimizing a
cost function [20]. Recently, Long and Mould [11] adapted
path planning for nonphotorealistic rendering, creating den-
dritic stylization. They crafted an initial stipple distribution
and built a dendritic structure by planning paths between
stipples. This will be similar to the initial dendrite generation
step of our method; once we have the dendrite, we process it
further in order to produce a CLD.



III. CONTINUOUS LINE DRAWING
ALGORITHM

The major idea of our method is based on the duality of trees
and contours. The observation is that a tree structure – a
connected graph with no cycles – possesses an outer bound-
ary that automatically forms a single closed trail, satisfying
the connectivity and non-self intersection requirements for a
drawing from a continuous line. See Figure 2 for an illus-
tration. Defining the path this way provides numerous op-
portunities for adapting local features into the structure when
finding the outer trail. We emulate Pullen’s approach for cre-
ating unicursal mazes, which builds an artificial wall around
the outside of a tree by transforming a corner (or a fork) into
a u-turn. The channel between the man-made wall and the
original tree provides a continuous line drawing.

(a) (b)

Figure 2: Our key observation. (a) A tree structure; (b) the associ-
ated CLD.

A. Overview of Our Approach

Figure 3 shows an overview of our approach. Given an im-
age (a), the first step constructs a structure-aware dendrites
by a procedure akin to the stippling algorithm of Mould [12]
followed by path finding [20], shown in (b). In the second
step, after labeling each branch (as shown in (c)), a brush-
fire propagation of the labels produces a region map for each
branch. The boundary between two different regions (shown
in 3(d)) builds an artificial wall around the original tree from
the first step. The algorithm then partially removes some
walls which had been connected with a node with multiple
branches having different labels (shown in green in 3 (d)).
The consequence is a U-turn for a fork with two branches,
which is similar to the algorithm used to produce the unicur-
sal maze [15]. The third step labels the inner tree as inside
wall and the outer wall with distinct identities, then propa-
gates those two labels, and finds the boundary between the
two regions, shown in (e). The resulting boundary is a CLD
which follows the outer boundary of the tree, shown in (f). In
the final stage, we explore three different effects: a vectoriza-
tion of the CLD, a Jordon map by the Jordon Theorem [13],
and a colorful macaroni art by representing the CLD with 3D
cylinders.

(a) Input (uniform
grey)

(b) Dendrite and stip-
ples

(c) Labeling

(d) Removal partial
walls

(e) Second labeling (f) Final CLD

Figure 3: An overview of our approach for a CLD (121 stipples).

B. Tree Construction

In the NPR literature, path finding has been used in simu-
lating natural phenomena such as dendrites [12, 11]. Path
planning provides a lot of control over the shape of the paths
because it allows both local and global management through
the location of the endpoints, the graph weights, and the or-
der. Long and Mould abstracted an image with dendrites
with good structure preservation [11]. Our approach is sim-
ilar, but instead builds the paths one by one during stipple
placement [12]. Path finding is accomplished at a local scale,
which reduces the computation.

Figure 4 demonstrates our placement strategy, based on
Mould’s stippling algorithm [12]. To build a dendritic struc-
ture, our algorithm is based on a regular eight-connected lat-
tice and starts with a stipple A with zero cost, usually the
one with high gradient magnitude, and incrementally finds
the next stipple B among a set of nodes around the starting
node, called a frontier, via Dijkstra’s algorithm [20]. The
frontier is stored in a priority queue; the nodes with lower
cost will be treated first. A new stipple is found by choos-
ing the pixel with the highest gradient magnitude along the
frontier after the accumulated cost is beyond a user-defined
threshold T . The cost for the new stipple is then set to zero
and is again placed into the queue, ultimately updating the
cost values of all the nodes around the new stipple. After ob-
taining two stipples, the first path is generated between them
by finding a path using a cost function, which is similar to
Long and Mould [11]. However, our cost function is differ-
ent from their dendritic stylization, since we take the sum of
edge weights rather than taking special account of the most
expensive edge. As our stipples are created sequentially, the
paths can be added into the tree structure step by step. The
process terminates when the queue is empty.

During the stipple generation, the cost function f1(s, t) is



defined as the accumulation of weights between a source s
and a node t. It is calculated as follows:

f1(s, t) = ∑G(i, j), (1)

where G(i, j) is the magnitude of the gradient map [18]. In
this way, the stipples preferentially follow the edges.

For path finding, another priority queue is used to find the
shortest distance from a seed point to the existing tree by Di-
jkstra’s algorithm [20]. The gradient map also guides the
path towards the nodes with high magnitudes, which was
similarly used by Long and Mould [11]. Since their goal
was to get natural-looking dendrites, their cost map included
some random variation to introduce irregularities. Here is
our cost function:

f2(s, t) = ∑(w1 ∗G(i, j)−w2 ∗D(i, j)+w3 ∗K), (2)

where w1 +w2 +w3 = 1, K is a constant, and D(i, j) is the
Euclidean distance between node (i, j) and the node t to
guide the path to find the tree quickly. We suggest using
w1 > w2 >> w3 to emphasize edge information.

(a) (b) (c)

(d) (e) (f)

Figure 4: Progressive path finding based on a stippling generation.
(a) A starting seed A; (b) expand the frontier and find a new stipple
B; (c) create the first path; (d) update and expand to find the next
stipple C; (e) find the second path; (f) generate the fourth stipple
and the third path.

Figure 5 shows some variations. Denser dendrites from
using smaller T , thus more stipples, would create a dense
CLD, as shown in (a) and (c). Images in the right column
were created using the same procedure as Figure 3 but at the
image center, not at the left corner, and show how the starting
location affects the final CLD.

Figure 6 applies some variations to the cat image. It shows
a sparse version of the cat with very low stipple budget. A
dense version is shown in Figure 16. The cat is visible in both
results. Figure 6 also shows how the order of construction
influences the final result.

(a) (b)

(c) CLD from (a) (d) CLD from (b)

Figure 5: Variations. (a) and (c): a dense version (1045 stipples)
and its CLD; (b) and (d): a different start and its CLD.

(a) (b)

(c) (d)

Figure 6: Cat variations. (a) Sparse dendrites (512 stipples); (b)
CLD from (a); (c) different starting (541 stipples, center); (d) CLD
from (c).

Figure 7 compares our dendrites with those of Long and
Mould [11]. While our quality of dendrite is lower, our im-
plementation is much faster with similar number of stipples
(around 3800); also, the dendrite is not our final outcome,
since we will build on it to create a CLD.



(a) (b)

Figure 7: Comparison with results from Long and Mould. (a) 3838
stipples in 530 seconds by Long and Mould [11]; (b) 3747 stipples
under 20 seconds.

C. Labeling Propagation

After we have the dendritic structure, the next step is to de-
fine a wall around the tree by propagating labels. Our strat-
egy is to create a wall between the two branches and to re-
move a portion of the wall to transform a corner into a u-turn
when there is a fork in the tree structure. See Figure 8 for a
visual explanation.

(a) (b) (c) (d)

Figure 8: First labeling propagation. (a) A fork; (b) labeling of
branches; (c) propagation of labels; (d) creation of artificial walls.

We first find the nodes NF located at forks, such as Fig-
ure 8 (a). We label each branch with distinct identities shown
in different colors in Figure 8(b). Then all nodes on the den-
drites will be pushed into a priority queue with initial cost
zero. The same graph and weights used in finding the stip-
pling will be applied here again, and brushfire propagation
used to extend the influence of each branch gradually into
the unlabeled nodes, similar to finding a distance map. Since
each branch in the fork is assigned a different identity, the
method creates a wall (in green) between two branches, as
illustrated in Figure 8 (c). To maintain the connectivity of
the boundary of an image, we add a boundary box as walls
and in stipple placement stipples are not placed in areas near
to the boundary box. See the green walls in Figure 8 (d).

Then, the u-turn is constructed by removing the portions
of the walls within a distance d of the nodes NF ; The param-
eter d is calculated based on the average intensity Ī around
the node NF :

d = L+M ∗ Ī(i, j)/255, (3)

where L and M are constants controlling the minimum and
maximum distance.

The last step, shown in Figure 9, applies the same labeling
strategy to both tree and wall, obtaining a boundary midway
between them. Figure 9 shows the label propagation pro-
cess: the original tree receives one label, the remaining walls
receive another, and the label propagation produces a wall
between them. This wall is the final continuous-line draw-
ing.

(a) (b) (c)

Figure 9: Second labeling propagation. (a) Partial removal; (b)
labeling both tree and the walls; (c) CLD creation.

Figure 10 shows another illustration of the process. In
the top row, we see two intermediate maps (those used to
generate Figures 3 and 6 (b)) after the first labeling, while
the bottom row shows the final labeling. Figure 11 displays

(a) (b)

(c) (d)

Figure 10: Two labelings. Top: first labeling for Figure 3 and Fig-
ure 6 (b); bottom: second labeling for Figure 3 and Figure 6 (b).

after finding a CLD result a propagation of labelled branches
from dendrite tree affects the neighbouring pixels for the cat.
Each color indicates an affected local area.



Figure 11: An influence map for the cat.

D. Post-processing Effects

After we have the labeling maps, we create three different
effects based on it: vectorization, Jordon map, and Macaroni
art.

D.1 Vector Graphics

The previous propagation generates a map with two re-
gions separated by the continuous line. We can vectorize
the curve by using standard boundary tracing with eight-
connectivity [18]. Following this, we can display a vector
version of the continuous line, with better quality in print
than the raster version.

D.2 Jordan Map

The CLD will be a closed simple curve. As the Jordan Curve
Theorem [13] states, any simple closed curve in the plane
separates the plane into two regions: one part lies inside the
curve and the other part lies outside it. After finding the
CLD, we can draw the inside part and outside part with dif-
ferent colors, similar to the duotone surfaces of Garigipati
and Akleman [7]. Figure 16 demonstrates the effect where
we draw the inner region and the outer region with different
colors.

D.3 Macaroni art

We also suggest an effect called Macaroni art, a children’s art
style produced by pasting different objects (especially dry
pasta) onto a canvas to give an impression of depth to an
image. We replace the continuous lines with a collection
of 3D cylinders and render it using the raytracer POV-ray.
Figure 12 and Figure 1 (d) show this effect.

IV. DISCUSSION

We propose a new method to create a CLD, using progres-
sive methods in both stippling generation and the dendritic
structure. Path finding provides a lot of potential flexibility
of control over tone, structure, and pattern. We are interested

(a) (b)

Figure 12: Macaroni art.

in algorithmic methods to generate continuous line drawings,
so we compare our method with automatic TSP-based meth-
ods [5, 10]. Figure 13 compares TSP art with our result. Fig-
ure 13 (a) shows the original, (b) shows the dendrites used to
create our final CLD, Figure 13 (c) shows the outcome of the
TSP method by Kaplan and Bosch [10], and (d) shows our
result. Our approach preserves the face profile more clearly
than does the TSP method: especially notice the edge profile
between Mona Lisas face and her hair on the left side. Since
we maintain the connectivity of the CLD based on a tree, we
have a simpler problem than creating a full CLD directly.

(a) (b)

(c) (d)

Figure 13: (a) Original image; (b) Dendrites; (c) TSP-Art from
Kaplan and Bosch [10]; (d) CLDs.

Relevance to the content of an image is a consideration
throughout the stippling generation, path finding, and label-
ing. Thus, our result with fewer stipples could still indicate
the content to some extent. In Figure 6, we can still iden-
tify the cat. To further enhance the image content, we sug-



(a) (b)

Figure 14: Thickened edges

gest thickening some of the segments of the CLD when they
are lying on the edges to indicate the importance. Figure 14
shows clearer structures by indicating the edges with thick-
ening. The cat in this figure is more prominent because the
user-defined region for showing the silhouette as a mask im-
proves the result. Figure 15 shows the mask used for creat-
ing the cat, also used for Figure 1. Basically, our method is a
space-filling curve in image space. This example shows that
interactivity may also be incorporated by selecting object re-
gions first and then filling them with the CLD.

Figure 15: The mask used in the cat example.

More examples are shown in Figure 16 and Figure 17.
Both demonstrate a lot of image information such as ob-
ject silhouettes and large-scale structure. The CLDs for the
man’s face and the background of the sailboat indicate the
tone change while the outline of the man and the sailboat
look clear as well.

There are two major issues for our method. First, be-
cause our method is image-based, the quality of our method
severely depends on the resolution. Figure 13 shows some
holes in our CLD because the operation of removal of partial
walls might change the topology of the tree and may create
some small new trees. One solution is to temporarily in-
crease the resolution when labeling and removing. Another
solution to it is to hook the isolated holes later to make it
filled.

Another issue is the inconsistency between the CLD and
the edge. Our strategy is to follow the edges as closely as

we can, yet we do not exactly follow the edges because we
also prefer an even spaced propagation.However, we provide
users an effective and flexible alternative to TSP-based ap-
proaches to create CLDs.

V. FUTURE WORK

We next discuss two possible future modifications. One takes
advantage of the tree structure and obtains a CLD in a very
fast way by two dilation operations. Subjectively, we like
this effect for the CLD although it uses double lines. The
other approach seeks to improve the structure preservation
by combining a Canny result into the tree structure.

A. Morphological Dilation of Dendrite

Our dendrites are trees. The trail of the depth-first traversal
of a tree is a continuous line. One TSP solution is first to
construct the minimum spanning tree and double each edge.
A TSP tour is present in this doubled tree. Similarly, if we
just want to get the visualization of a CLD, we can apply im-
age processing: once we have the dendrite, two dilations (A
and B) with different lengths for a tree can produce a CLD as
follows. For an output image C, find C =A(l1,c)+B(l2,cbg),
where l1 and l2 are the radii of the dilation circles, with
l1 > l2. The color c of the dilation circle in A is different
from the background color cbg. Conversely, the dilation cir-
cle in B uses the same color as the background. A prelimi-
nary result is shown in Figure 18. One drawback is that the
CLD has double lines. Also, we are forced to confront the
resolution issue, resolved here by copying the dendrites into
a larger image before processing.

Figure 18: CLD from image morphology.



(a) Dendrite (b) CLD (c) Jordon map

(d) Dendrite (e) CLD (f) Jordon map

Figure 16: More results.

Figure 17: Another CLD example from a dendrite. Left: original image; middle: dendrites; right: CLDs.



B. Incorporating Canny Edges

We notice the branches on the edges affect the quality of the
final CLD: they distract our eyes thus reducing the clarity
of the edge information. Here we suggest incorporating the
Canny edges into our tree; we should try to connect fewer
branches to the Canny edges in order to minimize the dis-
traction. The plan is as follows. First, we should simplify
Canny edges by removing any closed edges and separat-
ing the edges into individual paths without branches. Then,
building the tree as before with the Canny edges might im-
prove our structure preservation a lot. We think it will be a
very promising future direction.

VI. CONCLUSION

In this paper, we proposed a new idea about automatically
drawing a picture with a continuous line. The process in-
volves first creating a structure-aware dendrite and then ex-
panding it into a region whose boundary is the continuous
line. Our method can indicate the edge information of an im-
age as well as providing some tone suggestion. We demon-
strate some possible variations based on different stages and
show three post-processing effects. Because we do not re-
quire the computation of a TSP tour, we should have better
performance.

However, automatic continuous line drawing remains a
very hard problem. In this paper, we aimed to have a better
abstraction. But sometimes the good abstraction is damaged
by the necessity to maintain connectivity. Automatically cre-
ating a connected line with high quality of abstraction and
good aesthetics remains an open problem. In the end, we
might have to rely on some user intervention to obtain good
results.

REFERENCES

[1] D. Applegate, W. J. Cook, S. Dash, and A. Rohe. Solution of a
min-max vehicle routing problem. INFORMS Journal on Computing,
pages 132–143, 2002.

[2] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Travel-
ing Salesman Problem: A Computational Study. Princeton University
Press, 2006.

[3] B. Bayer. An optimum method for two-level rendition of continuous-
tone pictures. In IEEE International Conference on Communications,
IEEE, pages 26:11–26:15, 1973.

[4] R. Bosch. Opt art. In Proceedings of the Third international confer-
ence on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, CPAIOR’06, 2006.

[5] R. Bosch and A. Herman. Continuous line drawings via the traveling
salesman problem. Operations research letters, 32(4):302–303, 2004.

[6] R. W. Floyd and L. Steinberg. An Adaptive Algorithm for Spa-
tial Greyscale. Proceedings of the Society for Information Display,
17(2):75–77, 1976.

[7] P. Garigipati and E. Akleman. Duotone surfaces. In Proceedings of
the Eighth Annual Symposium on Computational Aesthetics in Graph-
ics, Visualization, and Imaging, CAe ’12, pages 99–106, Aire-la-Ville,
Switzerland, Switzerland, 2012. Eurographics Association.

[8] B. Gooch and A. Gooch. Non-Photorealistic Rendering. A K Pe-
ters/CRC Press, 2001.

[9] A. Hertzmann. Non-photorealistic rendering and the science of
art. In Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, NPAR ’10, pages 147–157,
New York, NY, USA, 2010. ACM.

[10] C. S. Kaplan and R. Bosch. Tsp art. Renaissance Banff: Bridges 2005:
Mathematical Connections in Art, Music and Science, pages 301–308,
2005.

[11] J. Long and D. Mould. Dendritic stylization. Vis. Comput., 25:241–
253, February 2009.

[12] D. Mould. Stipple placement using distance in a weighted graph. In
Computational Aesthetics, pages 45–52, 2007.

[13] J. O’Rourke. Computational Geometry in C (Cambridge Tracts in
Theoretical Computer Science). Cambridge University Press; 2 edi-
tion, 1998.

[14] H. Pedersen and K. Singh. Organic labyrinths and mazes. In
NPAR ’06: Proceedings of the 4th international symposium on Non-
photorealistic animation and rendering, pages 79–86, New York, NY,
USA, 2006. ACM Press.

[15] W. D. Pullen. Think labyrinth. Website, 2010. http://www.
astrolog.org/labyrnth.htm.

[16] A. Secord. Weighted voronoi stippling. In NPAR ’02: Proceedings
of the 2nd international symposium on Non-photorealistic animation
and rendering, pages 37–43, New York, NY, USA, 2002. ACM Press.

[17] S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, New
York, 1997.

[18] M. Sonka, V. Hlavac, and R. Boyle. Image Processing: Analysis
and Machine Vision. Thomson Learning; 2nd Revised edition edition,
1998.

[19] T. Strothotte and S. Schlechtweg. Non-Photorealistic Computer
Graphics: Modeling, Rendering, and Animation (The Morgan Kauf-
mann Series in Computer Graphics). Morgan Kaufmann; 1st edition,
2002.

[20] P. Winston. Artificial intelligence. Addison Wesley; 3 edition, 1992.
[21] F. J. Wong and S. Takahashi. A graph-based approach to continuous

line illustrations with variable levels of detail. Computer Graphics
Forum, 30(7):1931–1939, 2011.

[22] Q. Xing, E. Akleman, G. Taubin, and J. Chen. Surface covering
curves. In Proceedings of the Eighth Annual Symposium on Compu-
tational Aesthetics in Graphics, Visualization, and Imaging, CAe ’12,
pages 107–114, Aire-la-Ville, Switzerland, Switzerland, 2012. Euro-
graphics Association.

[23] J. Xu and C. S. Kaplan. Image-guided maze construction. In ACM
SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[24] J. Xu and C. S. Kaplan. Vortex maze construction. Journal of Mathe-
matics and the Arts, 1(1):7–20, 2007.


