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Abstract
We describe “magnetic curves”, a particle-tracing method that creates curves with constantly changing curva-
ture. It is well known that charged particles in a constant magnetic field trace out circular or helical trajectories.
Motivated by John Ruskin’s advice to use variation in curvature to achieve aesthetic curves, we propose to con-
tinuously change the charge on a simulated particle so that it can trace out a complex curve with continuously
varying curvature. We show some examples of abstract figures created by this method and also show how some
stylized representational forms, including fire, hair, and trees, can be drawn with magnetic curves.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

1. Introduction

Curves are a critical element in art and design. Abstract
forms made from curves have appeared as ornamentation on
virtually every type of object made by mankind, and abstract
art using curves has existed since the first abstract art was
created.

In The Elements of Drawing [Rus71], Ruskin advocates
using curved forms in artistic compositions, and advises a
constantly changing curvature: “Graceful curvature is dis-
tinguished... by its variation, that is to say, its never remain-
ing equal in degree at different parts of its course... a steady
change through the whole line, from less to more curvature,
or from more to less, so that no part of the line is a segment
of the circle.” Here, we suggest an algorithm for creating
curves with continuously varying curvature.

In a magnetic field ~B, a particle with charge q traveling
with velocity ~v experiences a force ~F = q~v× ~B. For q and
B constant, and no other forces, the particle will exhibit cir-
cular (helical) motion. If, however, we permit charge and/or
field strength to vary, the particle will trace out a path whose
curvature varies.

In this paper we suggest exploiting simulations of charged
particles in a magnetic field to obtain aesthetic curves. Fam-
ilies of curves can be obtained by slight modifications of ini-
tial q, or of parameters of an equation governing q(t). Fur-

ther, appealing branching structures can be produced in a
simple way, by splitting a particle into two particles that are
identical except for having charges of opposite sign. The two
particles will evolve differently from that point.

The body of this paper describes the particulars of our
magnetic curve formulation and gives some suggestions
for variations and algorithmic art. We demonstrate the
value of magnetic curves through many examples of two-
dimensional artworks, including abstract forms, ornamenta-
tion, hair, fire, and trees. In closing, we suggest future ab-
stractions and stylizations that could be produced using mag-
netic curves.

2. Previous Work

Computer-generated abstract forms have had a long his-
tory in computer graphics, going back almost to the very
beginnings of the field [Die86]. In some works, curves
serve merely as rendering primitives to convey the contents
of the rendered space; Strothotte and Schlechtweg [SS02]
give many examples in their survey of non-photorealistic
rendering. In others, algorithmically computed curves are
themselves the art; an early example is provided by
Mezei [Mez69], while a more recent example is found
in the work on computer-generated Celtic knots pio-
neered by Kaplan and Cohen [KC03]. More closely re-
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lated to our work, Wong, Zongker, and Salesin created
computer-generated patterns with floral motifs [WZS98].
The computer-generated ornament of Wong et al. used a
grammar with serial rewriting and prevented the elements
from overlapping by detecting and forbidding actions that
would create an overlap. We use a similar approach to
prevent overlap when creating our space-filling magnetic
curves.

Our core algorithm depends on simulating the movement
of particles that experience state-dependent forces. Particle
tracing has a long history of use in modeling plants, from
the earliest days of particle systems [RB85] to more recent
results [NFD07]. We are not aware of work using particle
tracing using magnetism for aesthetic purposes, although it
is worth mentioning that Gruber and Glaeser [GG07] had
aesthetic motives when they proposed creating minimal sur-
faces inspired by magnetism. Like the cited work on particle-
traced trees and grass, and unlike the minimal surfaces, we
seek to create curves: one-dimensional structures embedded
in a higher dimensional space.

We can also use the particle tracing to outline figures, in
the spirit of Curtis’s loose and sketchy filter [Cur98], which
uses particle tracing to portray boundaries. Vector graphics
has been used since the earliest days of computer graphics,
and is in widespread use today for 2D rendering; improv-
ing the capabilities of vector graphics is still an active area
of research, as evidenced by the recent development of “dif-
fusion curves” by Orzan et al. [OBW∗08]. Diffusion curves
are intended for data representation and rendering, while our
magnetic curves are intended for modeling. We should note
that diffusion curves and magnetic curves are compatible: it
is quite possible to extend the magnetic curves so as to add
a blur value to the traced particle, and then render a raster
output using a Poisson solver, rather than using the vector
curves as output directly, as we do in most of the examples
we show in this paper.

Cubic splines [FvDFH97] are likely the most common
way of representing curves in modern computer graphics.
We are not suggesting magnetic curves as an alternative
to splines. Rather, we are suggesting magnetic curves as a
mechanism for determining the paths, which can then be ap-
proximated by points, line segments, or higher-order poly-
nomial segments.

3. Algorithm

A particle with charge q moving in a magnetic field ~B experi-
ences the Lorentz Force, ~F = q~v×~B, which causes a circular
motion of the particle [LM75]. In our method, we restrict the
particle to move in the xy plane, and the magnetic field must
be in the z direction. Future states of the particle are obtained
using numerical integration (in our implementation, we used
forward Euler integration). For a constant magnetic field ~B
and a constant q, the particle traces out a circle in the xy
plane.

When we change the particle charge q and the magnetic
field B, the motion track of the particle is no longer a circle;
instead, the particle can trace out some interesting curves.
In the following, we will describe approaches to varying q,
varying B, and to creating elaborate structures of branching
and space-filling curves.

3.1. Varying curvature

A constant acceleration perpendicular to the direction of mo-
tion will cause circular motion with radius r, where r = v2/a.
Combined with a = F/m = qvB/m, we can see that for fixed
velocity and magnetic field, higher values of q give smaller
value of radius r. If we increase q, the radius of the curve
will decrease accordingly. Similarly, with a decreasing mag-
nitude of q, the resulting curve will have an increased ra-
dius. If q changes continuously, the curvature of the path
will also vary continuously. Note also that if we instanta-
neously change the sign of q while preserving its magni-
tude, the direction of acceleration will be instantaneously
reversed, leading to a curve that winds in the opposite di-
rection.

Figure 1 shows the relationship between q(t) and the re-
sulting curves, where q is the charge and t is time. The
red point is the initial position. In the first row, the left im-
age shows q decreasing with time according to the function
q(t) = t−α. Here we use α = 0.7. The right image shows
the resulting curve growing with an increasing radius. In the
second row, q(t) is a triangular wave with amplitude 1 and
mean 0.5. Again, the right image is the resulting curve; the
point where the charge drops to 0 is visible as the location on
the curve where it abruptly straightens (no charge means the
particle will travel in a straight line). In the third row, q(t) is
an inverted triangular wave with amplitude 2 and mean 0. It
can be seen that reversing the charge does not create as obvi-
ous a discontinuity in the graph as simply setting the charge
to an arbitrary different value. In the fourth row, q(t) is a
square wave with 0 mean. Because the charge is constant
in each half-period, the curve follows a piecewise circular
route; whenever the sign of q flips, the circle is reversed. It
holds less visual interest than the other graphs because of the
large sections of constant curvature.

3.2. Branching curves

Instead of tracking a single particle to get a single curve, we
can use multiple particles to get complicated patterns. We
suggest releasing new particles at intervals along the initial
particle’s path. We refer to the initial particle as the “par-
ent particle” of the new particles. Each new particle will be
tracked and produce a new curve. The process can be made
recursive: we can spawn new particles from the child par-
ticle’s path if we want. To create an effect reminiscent of
vegetation, with curves growing to either side of the current
branch, we set the sign of the child particles’ charge ran-
domly. Figure 2 shows an example of the process. In the left
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Figure 1: Different q(t) (left) and the resulting curves
(right).

image, we grow a single curve. In the right image, we grow
six new curves from six positions at equal intervals along the
initial curve.

3.3. Space-filling curves

Here we demonstrate how branching magnetic curves can
be used to fill space. We use the equation q(t) = (T − t)−α,
where t is the elapsed time for a given curve and α is a pa-
rameter that governs the rate of change of curvature for a
curve; T dictates the length of a curve, where a given curve
ranges from t = 0 to t = T − 1. Figure 3 shows different
curves with different values for T and α. From top to bot-
tom, T =650, 450, 250, 50; from left to right, α=0.8, 0.75,
0.7, 0.65. Observe that in each column from the curves be-
come shorter as T decreases; in each row the spiral is looser
as α decreases.

We use curves grown with four pairs of (T ,α):
(T1,α1), (T2,α2), (T3,α3), (T4,α4), where T1>T2>T3>T4 and

Figure 2: Left: a single curve; right: six new curves growing
from the left initial curve.

Figure 3: Different curves with different T and α.

α1>α2>α3>α4, to fill a space of size xmax,ymax. The pro-
cess is described as follows.

We first release a particle at a position (x0,y0). Here, we
chose a position located at center bottom. Initially, the curve
has parameters T1 and α1. We terminate the progress of a
particle if either of the following are met: i) the particle trav-
els beyond the boundary, that is x > xmax or x < 0 or y > ymax
or y < 0; ii) the curve crosses previously drawn curves.

To detect whether a curve crosses other curves we use
the following method. We divide the whole space into cells.
Each cell stores an initial ID code to indicate that it is unoc-
cupied. If a particle moves into one cell and either the cell
is unoccupied or the cell is marked by its parent particle, the
particle can survive; otherwise, we judge the curve crosses
another curve. A formerly unoccupied cell is marked with
the ID code of the entering particle. Crossing is prohibited;
if a crossing event is detected, we remove the markers for
the current particle and restart it at its initial position with
the next smaller (T,α) pair. If a crossing is detected when
the smallest available T,α is used, we abandon that position
and move to the next position.

As we observed from Figure 3, the curve with largest
value of T and α occupies the largest space. If the curve with
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T1 and α1 fails, we restart the particle at its initial position
with T2 and α2. If T2 does not fit, we use T3 and α3 and then
T4 and α4. The intent behind doing so is to fill the space with
the largest possible curves, while still being able to use the
small curves to fill the remaining small spaces.

If we release new particles successively, we can obtain a
space filled with different shapes of curves. The process is
shown in Figure 4. The first image shows the initial curve.
The second image shows different sizes of curves growing
from the initial curve. Some curves are relegated to small
size to fit in small spaces. The third image shows more
curves growing from new curves in second image. The last
image shows the final outcome, in which the curves fill the
whole space. Note that while the process was demonstrated
with a particular set of q(t) equations, it is a general pro-
cess that (as implemented) can use any set of equations or
distributions of parameters.

We also have the option of varying the magnetic field in-
stead of using a constant magnetic field. Next, we show the
effect of using Perlin noise to vary B spatially; in particu-
lar we take Bz from the noise, leaving the other two com-
ponents at zero. We first build a lattice of size m×m. For
each node in the lattice we obtain a magnetic field value:
Bz = 0.5 ∗ (1 + noise(x/50,y/50)). We then choose a po-
sition in the lattice to release a particle and create a space-
filling branching curve as described previously. At each time
step, we update the velocity of our particle according to the
magnetic field at its current position. The irregular values of
B give irregular curves. In Figure 5 we visualize the mag-
netic field and the resulting curves. From this figure, we can
observe that curves are much more irregular than the curves
in Figure 4, while still possessing the same level of continu-
ity of curvature, leading to a more visually appealing struc-
ture.

4. Results

Magnetic curves are well suited to creating stylized depic-
tions of certain classes of objects, including trees, hair, wa-
ter, and fire. In addition, they can be used to create decora-
tion and appealing abstract forms. In this section, we will
show some examples of both representational and abstract
structures created with magnetic curves.

Trees have been long studied in computer graphics and
stylized depictions in the art world abound. Our branching
structures can resemble stylized trees, and we will demon-
strate this with a comparison to a historical artwork: Figure 6
shows the “Tree of Life”, created by Gustav Klimt. In this
painting, the tree is composed of curvilinear branches. Our
tree in a similar style is shown in Figure 7. In our image, new
curve branches grow from one main branch and the space is
filled with different sizes of curves. To achieve the result, we
release a particle to grow the main curve. Then we release
new particles on the main curve and repeat the process until Figure 4: Iterations in creating the space-filling curve.
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Figure 5: Left: the magnetic field with value of Perlin noise;
right: the resulting irregular curves.

the space (top 3/4 of the image) is filled with different sizes
of curves, using the method described in section 3.3 to avoid
the curves crossing over each other. We are not intending to
exactly reproduce Klimt’s tree, but to demonstrate that this
kind of stylization can be captured by the magnetic curves.
The spirals used in the “Tree of Life”, and present in some of
Klimt’s other work, are easy to create with magnetic curves.

Figure 6: The painting “Tree of life” by Gustav Klimt.

Architectural ornamentation on doors, windows, and
arches is common; some examples appear in Figure 8. Here
we use our method to generate two window frames, shown
in Figure 9. We release particles at manually chosen initial
positions and modify the initial velocity by hand to make
the curves fit in the window. We use the method described in
section 3.1 to get different shapes of curves. In our result, all
patterns are composed of different curves with a background
taken from a real glass image. Since we wanted a symmet-
rical pattern, we only built the right side of the frame and
mirrored it. The resulting ornamentation is akin to existing
designs. We use different functions of q(t) to get different
shapes based on the method described in section 3.1. Most
curves in the patterns use the equation q(t) = (T −t)−α. The
difficult part is the design of pattern and finding proper T and
α. We tentatively select T and α to make the curve fit in the
window area. If the curve with current T and α is too long
and out of the window boundary, we decrease T or change
α.

Figure 7: Our stylized tree created with magnetic curves.

Figure 8: Architectural ornamentation. The window image
comes from Richard Marcin and John Wahlert’s “The city
of Kosice”. The door image comes from Cambridge 2000
Gallery.

Figure 9: Two window frames adorned with curves.

c© The Eurographics Association 2009.



Ling Xu and David MouldSchool of Computer Science, Carleton University, Canada / Magnetic Curves

Figure 10 shows three different hair styles created by our
method, overlayed on a hand-drawn image (also shown). To
create each of the images, we grow the curves by releasing
particles from points on a hand-drawn “hairline” curve. To
obtain the upper right image, we set q(t) = (T − t)−α with
large T and small α values; we used different T and α val-
ues for different strands, and reversed the sign of q partway
along the curve so that the hair would look wavy. In the lower
left image, we set q(t) to the sine function. In the lower right
image, we set the curves growing with different time length
T and different α, so the hair is composed of curves with
different lengths and curvatures. A closer look at yet another
hairstyle can be seen in Figure 11; this was also produced
using q(t) = (T − t)−α.

Figure 10: Three hair styles by our method.

We use our method to create a fire image with a curvi-
linear boundary as shown in Figure 12. We release an initial
particle with a charge profile of q(t) = (T −t)−α and reverse
its charge partway along its trajectory (at t = T/2), causing
the visible point of inflection. Subsequently, we terminate
the particle and spawn a new one when a condition is met;
in the depicted fire, the condition was that the x component
of velocity was 0. The new particle is given a random veloc-
ity with a small uniform angular distribution about the posi-
tive x direction. When a sufficient number of repetitions have
been performed (say 3 or 4) we start moving down the left
side. The overall result is a boundary composed of piecewise
continuous curves; the positions where the velocity changes
happen are the tips of the flames. The resulting flame image
is a conventional cartoon flame. A similar process could be
used to produce conventional cartoon water waves.

Our remaining results comprise additional abstract
curves. Figure 13 shows two abstract forms created by set-
ting B according to Perlin noise, as described in section 3.3.

Figure 11: Another magnetic hairstyle.

Figure 12: Cartoon flames created with magnetic curves.

Each point on the curve is colored by taking one RGB color
channel from the local noise value and setting the other two
to zero. These are space-filling curves with irregular spatial
variation in their curvature, yielding a subjectively pleasing
structure.

Figure 14 shows curves grown in a magnetic field by
setting B according to Perlin noise. To create this figure,
we tracked a single particle with a fixed charge as it wan-
dered within the image area. Whenever it reached the image
boundary, we reversed its velocity, ensuring that it remains
within the image area. Every time it reentered the image
area, we assigned it a different random color, determined by
assigning each RGB channel an independently chosen value
from a uniform random distribution. From the figure we can
see the different colors of curves which represent different
periods of time spent continuously within the image area.
While we did not find this image as straightforwardly attrac-
tive as the space-filling curve, we confess to a certain fas-
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Figure 13: Two abstract curvilinear forms.

Figure 14: Meanderings of a charge in a varying magnetic
field.

cination with the unpredictable meanderings of the particle
and the resulting tangle of curves.

5. Discussion

The main strength of the method lies in its ability to pro-
duce constantly and smoothly varying curvature within the
well-understood framework of particle systems. The ability
to create branches by negating q is also an asset.

The limitation of the method is the difficulty of controlling
the exact course of the curve. This is a limitation held in
common with other particle tracing methods.

We have not yet much explored the possibility of allow-
ing q to vary according to other elements of the particle’s
state vector. For example, we could have q depend on posi-
tion, or on the direction of the particle’s travel. We demon-
strated some position-dependent effects by varying B spa-
tially; more investigation is warranted, considering the suc-
cess of the results obtained so far.

Image # curves processing time
Space-filling example 312 1.5s
Stylized Tree 72 0.7s
Perlin curves 272 1.0s
Hair 376 4.3s
Window 7 0.05s

Table 1: Timing results for some of the magnetic curves.

Table 1 summarizes timing results, given with respect to
a 1.8GHz P4 with 512 MB RAM. The process is not partic-
ularly demanding, and computer times are only a few sec-
onds per image. Note that the hair timing includes the time
needed to load files (the face image and an image contain-
ing the hairline to spawn hair particles from). In terms of
human time, the process can be time-consuming; we expect
that most users lack intuition for controlling curves by modi-
fying charges and magnetic fields. It took on the order of two
minutes to find the appropriate parameters for each curve on
the window.

We have showed one method for creating branching
curves, but we have not much considered the aesthetics
of curve thickness as it relates to branching. Consider
Figure 15, which reproduces an image created by Alfons
Mucha [Hof84] near the beginning of the 20th century. This
image served as inspiration for our own hair results, but also
points towards using curve thickness to add richness to mag-
netic curves.

An obvious limitation of our present implementation is
its restriction to 2D. The idea of magnetic curves extends
straightforwardly to three dimensions, and we hope both to
create curves in three dimensions and to create 2D curves
on the surfaces of complex structures. Magnetic fields could
vary spatially or could be textures on the surfaces of objects.
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Figure 15: Art by Alfons Mucha: inspiration for magnetic
curves.

6. Conclusions

In this paper, we proposed simulating magnetic forces to cre-
ate curves with continuously varying curvature. The result-
ing curves can be used to create appealing abstract forms.
They are also a potential tool for creating stylized depic-
tions of classes of objects and phenomena that are well de-
scribed by curves; such phenomena include trees, hair, and
conventionally-drawn cartoon flames.

Other potential uses of the method abound. Water waves
are conventionally stylized with a repeating structure similar
to the cartoon flames we showed. We showed only one styl-
ized tree (after Klimt) but other vegetation, including trees
but also vines and leaves, can be depicted also. (Indeed, a
variety of leaf outlines can be created by adapting our ap-
proach for cartoon flames.) We showed a few hairstyles; we
envision possibilities for also drawing stylized fur, feath-
ers, cloth, and smoke. Finally, we showed a few possibili-
ties for purely abstract forms, but experimentation will re-
veal a much wider variety of such forms; our hope is that
the constantly changing curvature, governed by formulas for
q(t,x,y,z) and ~B(t,x,y,z), will give the resulting curves high
aesthetic value.
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