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Figure 1: Black and white image conversion. Left to right: original image; unified segmentation result; detail-oriented result; base+detail
result.

Abstract

Halftoning algorithms attempt to match the tone of an input im-
age despite lower color resolution in the output. However, in some
artistic media and styles, tone matching is not at all the goal; rather,
details are either portrayed sharply or omitted entirely.

In this paper, we present an algorithm for abstracting arbitrary input
images into black and white images. Our goal is to preserve details
while as much as possible producing large regions of solid color
in the output. We present two methods based on energy minimiza-
tion, using loopy belief propagation and graph cuts, but it is difficult
to devise a single energy term that both sufficiently promotes co-
herence and adequately preserves details. We next propose a third
algorithm separating these two concerns. Our third algorithm in-
volves composing a base layer, consisting of large flat-colored re-
gions, with a detail layer, containing the small high-contrast details.
The base layer is computed with energy minimization, while local
adaptive thresholding gives the detail layer. The final labeling is
tidied by removing small components, vectorizing, and smoothing
the region boundaries. The output images satisfy our goal of high
spatial coherence with detail preservation.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; J.5.0 [Computing Applications]:
Arts and humanities—Arts, fine and performing

Keywords: halftoning, image filtering, black and white images

1 Introduction

Conversion of grayscale images into binary images is a task long
studied in computer graphics, and various halftoning algorithms
have been proposed over the years. Oftentimes, such algorithms
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exchange spatial resolution for intensity resolution: a solid-colored
region of the input image is transformed into a pattern of black and
white primitives such that the area integral of intensity in the output
is the same as the intensity level of the input.

However, there are contexts in which low spatial and low color res-
olutions occur simultaneously. Mobile devices usually have small
screens and may have limited color resolution, so images intended
for such displays ought to be as simplified as possible. Icon design
provides another example: icons should be recognizable, but small,
so few pixels are available; and often, color is used as a separate
information channel, so is not available for image reproduction.

Further, faithful reproduction of tone is not always desirable, even
when possible. Some artistic media, such as scratchboard [Lozner
1990], inherently result in black and white images. Also, some
artists employ other media such as ink to obtain similar effects. For
example, Frank Miller’s Sin City graphic novels [2005] use solid
blacks and whites without mid-gray levels (other colors are occa-
sionally introduced, albeit rarely).

In this paper, we propose an automated algorithm for converting a
grayscale image into a black and white image; the intended out-
put image retains sharp features while areas lacking sharp features
are converted to solid color. Example output from our algorithm
is shown in Fig 1. The results are an instance of abstraction, the
process of removing irrelevant information while preserving salient
detail; even salient detail is sometimes simplified.

Binarization of grayscale images is in some sense a trivial opera-
tion. One method is to choose a threshold, so that pixels brighter
than the threshold become white, and darker pixels become black.
Unfortunately, it is not easy to find a threshold that does a good job
for a particular image; for most images, no single threshold will do
a reasonable job. On the other hand, adaptive thresholding tech-
niques suffer from overamplification of noise.

We use adaptive thresholding to provide an initial guess about the
fate of individual pixels, and then use energy minimization to obtain
a binary labeling. We propose two energy formulations: a “unified”
formulation that takes local and global information into account,
and a “detail-oriented” formulation that concentrates on the local
neighbourhood. Energy minimizations are achieved through loopy
belief propagation and graph cuts.

The difficulty of constructing an appropriate energy term that both
captured local details and large-scale coherence prompted us to de-
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vise an alternative method that produced a labeling based on a com-
position of a detail layer and a base layer; graph cuts was used in
building and composing the layers. Following the labeling, the bi-
nary image is polished by removing small isolated elements and
converted to a vector representation.

The contribution of this paper is to present a trio of related meth-
ods for creating stylized black and white images from input pho-
tographic images. The desired labelings retain salient details but
have substantial regions of constant color where no details were
present. Graph cuts and loopy belief propagation were applied to
the problem framed as an energy minimization exercise, and pro-
duced unsupervised labelings of an arbitrary input image. With the
lessons learned from these, coupled with the observation that local
adaptive thresholding preserves detail, we propose a base plus detail
algorithm for black and white stylization, where graph cuts is used
to obtain a coarse (base) level, local adaptive segmentation is used
to obtain a fine (detail) level, and the two are combined to produce
a final image that both preserves details and has large flat-colored
regions where warranted.

The paper is organized as follows. In the following section, we re-
view some artistic and scientific work related to our goal. Next, we
describe the details of our proposed algorithms. We show results
of applying the method to different input images in the following
section, and give some commentary on the effectiveness and ro-
bustness of the techniques. This is followed by a final section in
which we conclude and provide some suggestions for future work.

2 Previous Work

Previous work related to this problem follows three threads: al-
gorithms for halftoning; methods for artistic depictions of input
images; and schemes for foreground extraction from images. We
consider each of these in turn.

The goal of halftoning is to convert a grayscale (continuous tone)
image into a binary (two tone) image, often for reproduction on a
low color resolution output device such as a printer. Techniques
including error diffusion [Floyd and Steinberg 1977] and ordered
dither are commonplace. Both error diffusion and ordered dither
use the maximum available spatial resolution; the intent is that over
a region, the average intensity of the two-tone output image equals
the average intensity of the continuous-tone input image. When the
output image has higher spatial resolution than the input, halftoning
algorithms can match tones very effectively.

When the output image resolution is the same as or lower than
the input resolution, however, halftoning does not always repro-
duce the input effectively. Sharp features may become less clear,
and spurious textures may be introduced (although it is possible to
control such textures for artistic effect, as shown by Veryovka and
Buchanan [1999]).

Close tone matching of the input image is not always necessary
in image abstraction contexts. Various artistic media, including pen
and ink [Guptill 1976], engraving, and scratchboard [Lozner 1990],
produce images in black and white.

Both pen-and-ink and engraving have seen some attention in past
years. Winkenbach and Salesin [1994] gave a scheme for imitating
artistic pen and ink illustration and introduced stroke textures; Sal-
isbury et al. [1994] made use of the stroke textures in an interactive
application, creating halftoned images which look as though made
with pen and ink. Ostromoukhov [1999] presented a method for
creating beautiful digital engravings of an input image, but one that
requires considerable user input to achieve its effects.

Also worth mentioning in this context is stippling, a particular style

of drawing in ink in which the ink is distributed through the out-
put image as tiny discrete dots. Stippling has fascinated computer
graphics practitioners in part because of its connections with com-
putational geometry; algorithms for stippling [Deussen et al. 2000;
Secord 2002] have often drawn on Lloyd’s algorithm [O’Rourke
1990] for centroidal Voronoi diagrams. Usually, problems of stip-
ple distribution have been cast as halftoning problems, deploying
stipples as halftoning primitives with the intent of matching tone.

Other researchers have previously proposed automated abstraction
problems. Gooch et al. [2004] presented a method for creating
black and white caricatures of human faces out of photographs;
while their caricature method is specialized for human faces, the
initial image processing can be applied to arbitrary images. Their
output black and white images are the product of a thresholded
brightness computation and a thresholded luminance, where bright-
ness is calculated by a sum of differences of Gaussians over a range
of scales and luminance is conventional. Winnemöller et al. [2006]
also perform abstraction on arbitrary photographs and video, but do
not abstract all the way to black and white.

Lastly, methods for image segmentation have some relevance to the
current problem. We have used the existing frameworks of loopy
belief propagation (LBP) and graph cuts to perform foreground ex-
traction for our stylized images.

In the following subsections, we describe LBP and graph cuts, but
first, we give a brief discussion of image segmentation as an energy
minimization problem. The energy cost function to be minimized
is usually written as a Gibbs energy with a data cost component
D (the cost of assigning a label to a pixel) and a smoothness cost
component V (the cost of assigning labels to adjacent pixels).

We write the label of a pixel p as fp. The data term of the en-
ergy is D = Σpdp(fp); that is, the total data energy is the sum
over all pixels of individual pixel energies. The smoothness term
is V = Σvpq(fp, fq), where the sum is taken over all neighboring
pixel pairs (8-connected, in our implementations), and vpq(fp, fq)
gives the smoothness energy of assigning label fp to pixel p at the
same time as assigning fq to q. The particular functions dp(·) and
vpq(·, ·) depend on the application. The goal is to choose a set of
labels over all pixels that minimizes the total energy E = D +λV .
The particulars of the different minimization processes are given
next.

2.1 Loopy Belief Propagation

Loopy Belief Propagation is a popular algorithm for performing en-
ergy minimizations in image processing. Max-product belief prop-
agation computes a labeling for any unlabeled variables given an
assignment to the other variables in the model. If the graphical
model is a tree (no loops), then the computed labeling is optimal
(it is the maximum a posteriori assignment, or the labeling with the
highest probability). In general graphs, optimality is not guaran-
teed, but the algorithm has demonstrated itself to compute a rea-
sonable approximation in many circumstances. Here, we focus on
belief propagation as it pertains to image analysis; a discussion of
loopy belief propagation in general graphs is given by Weiss and
Freeman [2001]. A more thorough description of loopy belief prop-
agation for image analysis is given by Szeliski et al. [2006].

The loopy belief propagation algorithm is easily modified to com-
pute a labeling of minimum energy over an image rather than a
maximum probability (the energy is the negative logarithm of the
probability); hence, it can be used to compute pixel assignments
of low energy. In this framework, each pixel is treated as a ran-
dom variable whose possible labelings are the potential colours
of the pixel. Each pixel also has a neighborhood, which is the 4-
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neighborhood or the 8-neighborhood of the pixel (in our case, the
8-neighborhood was used). A pixel receives messages from each
of its neighbors; these messages influence the likelihood of a pixel
taking on a particular label. The message passed from a pixel p to
a neighboring pixel is a summary of p’s local data and smoothness
terms, plus the messages p received from all other neighbors in pre-
vious iterations. The algorithm terminates after a fixed number of
iterations, or if it converges to a solution, where convergence means
that the likelihoods at each pixel are no longer changing. When the
computation is complete, each pixel is assigned the label with the
highest likelihood.

2.2 Graph Cuts

Graph cuts provides another framework for energy minimization;
in recent years graph cuts have seen widespread use in computer vi-
sion and computer graphics [Boykov et al. 2001; Boykov and Jolly
2001; Li et al. 2004; Rother et al. 2004]. The basic idea is to treat
the image as a graph, typically a 4-connected or 8-connected grid,
and to connect each node (pixel) to two additional terminal vertices,
the source and sink. Edge weights are computed based on relevant
image properties, and the minimum cut is determined: the set of
edges with minimum total cost whose removal will separate source
and sink. After cutting, each pixel will be connected to only one
terminal, giving it its label.

The minimum cut for the two-terminal case can be straightfor-
wardly calculated based on max-flow. In our case, we are attempt-
ing to partition the graph into two pieces, so we can employ this
method. We used an implementation of min-cut/max-flow provided
by Kolmogorov [Boykov and Kolmogorov 2004]. Our remaining
task is to decide what weights to assign to the edges.

Typically, terminal weights are assigned according to the data term
of the Gibbs energy, while neighborhood weights are determined by
the smoothness energy. The neighborhood weights may be given by
something as simple as a linear energy term, such as

Vpq(fp, fq) = 0, fp = fq (1)

Vpq(fp, fq) = |ip − iq|, otherwise (2)

where ip is the intensity of pixel p. In our application, we employ
a variation of this energy term, and derive terminal weights from a
comparison of a pixel’s value to the mean value in its neighborhood,
as detailed in Section 3.2.

3 Algorithms

Figure 2: Thresholding and adaptive thresholding.

This section describes the system we built to convert images to
black and white. First, though, we seek to supply some insight
into the problem and some additional motivation for the need for a
complex algorithm to solve it.

Figure 2 shows the perils of thresholding. The left-hand result used
a single threshold (the mean image intensity) over the entire im-
age, while the right-hand result used a variable threshold (the mean
intensity within a window). The problems with such thresholding
schemes are clear. Global thresholds ignore local contrasts, while
local thresholds preserve local contrast but amplify noise in rela-
tively flat regions of the image.

At first, we thought that the outcomes from local and global thresh-
olding might be combined in some way to produce an adaptive
thresholding algorithm that suited our needs. However, after spend-
ing some effort attempting to create a more sophisticated threshold-
ing scheme, we came to the conclusion that thresholding alone was
not a good approach to the problem, and we turned to other seg-
mentation methods. We present here two variants of an algorithm
for converting grayscale images to black and white, using energy
minimization to produce a labeling. Our first variant uses LBP on a
unified energy formulation that includes local, global, and smooth-
ness terms. Our second variant uses graph cuts to minimize an en-
ergy consisting only of a smoothness term and a local data term.

The segmentation-based black and white conversion system con-
sists of four stages. First, image statistics are extracted from the
original image: standard deviation, local and global means, and
gradient magnitudes. Second, the image is separated into black and
white regions using either graph cuts or loopy belief propagation.
Third, the black and white image is smoothed by removing small
isolated regions. Finally, boundaries of regions in the raster image
are extracted and drawn with splines; optionally, the vector bound-
aries can be further smoothed at this stage.

Although adaptive thresholding is not suitable for the segmentation,
we can use the outcome of adaptive thresholding as a set of priors
for an energy minimization labeling. In particular, the distance of a
pixel from its neighborhood’s mean (precursor to adaptive thresh-
olding) gives an energy term well-suited to representing local detail.

In section 3.1, we present an approach combining global and lo-
cal thresholding results, which we dub the “unified” algorithm. In
this case, the labeling is computed using loopy belief propagation.
Section 3.2 contains results for a data term using only local thresh-
olding, where energy minimization is done using graph cuts; this al-
gorithm is dubbed “detail-oriented”. The latter algorithm did a bet-
ter job preserving detail while flattening the low-contrast regions.
However, the images resulting from the unified algorithm are not
without their charm.

The progression of an image through this pipeline is shown in Fig 3.
The top image shows a visualization of the data term used for the
detail-oriented segmentation, where only the local neighborhood is
considered; it is actually an alternative visualization of the image
in its own right, akin to “embossing” effects obtained by gradient-
based edge detection. The second image is the outcome from the
segmentation, in this case graph cuts. The third image shows the
result of despeckling by eliminating connected components smaller
than a certain size (25 pixels, here) and the bottom image is the final
vectorized version of the black and white raster image. Connected
components labeling and boundary extraction can be done using
well-known algorithms such as those found in textbooks [Shapiro
and Stockman 2001]. The source image for this sequence is shown
in the teaser in Figure 1.

The heart of the algorithm is the segmentation in the second stage.
The preceding gave only a brief overview of the idea; additional
details for the unified algorithm are given in section 3.1 and details
for the detail-oriented algorithm are given in section 3.2.

Our segmentation-based algorithms preserve most details, although
very fine scale details such as hair texture are often merged. How-
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Figure 3: Progress through the pipeline. Top: visualization of data
energy. Middle: initial segmentation. Bottom: result after despeck-
ling.

ever, large regions of the image can change color based on a desire
for agreement with local details; ideally, we would want the sky
region in the sheep texture to become a single color. We found
it difficult to manage both coherence and detail in a single image.
Accordingly, we split the image into a base layer (promoting coher-
ence) and a detail layer (containing local features). The details of
this algorithm are given in section 3.3.

3.1 Unified Segmentation Algorithm

As before, we associate a cost with a label fp for a given pixel p. We
will attempt to determine the minimum cost configuration of labels
for all pixels in the image. A label can be either black or white; we
define the function s(f) such that s(black) = −1 and s(white) =
1. We will also use the two-argument function s(fp, fq) which
returns 1 if its arguments are the same, -1 otherwise.

We compose the data cost function for pixel p from a local en-
ergy component and a global energy component. The global en-
ergy component for a given pixel is determined by comparing the
pixel’s value ip with the mean image intensity µ. Let δG =
(µ − ip)/(M + 1), where M is the maximum possible pixel value
(in our case, 255). The division by M + 1 puts the value in the
range (−1, 1). Finally, the the global energy cost of labeling the
pixel with label fp is given by

G(fp) = −ln(0.5 + 0.5 · s(fp) · sign(δG) · |δG|γD ). (3)

The use of sign(δG) is to ensure that the sign (positive or negative)
of δG is retained after raising to a power.

Similarly, we compute the local energy component for a pixel by
comparing the pixel’s value ip with be the mean intensity of its
neighborhood µp. We first compute δL(p) = (µp − ip)/(M + 1).
The local energy cost of labeling the pixel with f is then

L(fp) = −ln(0.5 + 0.5 · s(fp) · sign(δL) · |δL|
γD ) (4)

where s(·) is defined as before. Functions 3 and 4 punish (with a
higher energy) a pixel label that falls on the opposite side of the
computed mean as the original pixel value, while rewarding label-
ings that fall on the same side of the mean as the original pixel
value. The parameter γD affects the magnitude of the energy; the
higher the value of γD , the more severe the punishment and rewards
are for even small values of δG and δL. We experimented with dif-
ferent values of γD , and obtained the most pleasing images with
γD = 0.3333 (cube root).

The global energy and local energy term are combined to give the
data term through a simple weighting function:

D(fp) = (1 − α)G(fp) + αL(fp), (5)

giving the data term for pixel p.

The parameter α allowed us to tune the amount of local features
in the resulting images. Higher values of α retained much of the
spatial frequency of the original image, while lower values created
larger segments of one colour. We explored different settings for
this parameter; values around 0.8 seemed to give the best result.

To compute the smoothness cost between two neighboring pixels
p and q, we used the gradient magnitude values of the image. Let
gp represent the gradient magnitude at pixel p, and define GM to
be a constant larger than the gradient magnitude of any pixel. Let
δV (p, q) = (GM − max(gp, gq))/GM . Given these definitions,
the smoothness energy is

Vpq(fp, fq) = −ln(0.5 + 0.5 · s(fp, fq) · δV (p, q)γV ) (6)
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where as stated previously, s(·, ·) returns 1 if its inputs are the same
and −1 otherwise. This function punishes (rewards) neighboring
pixel labelings that are different (the same) with a high (low) en-
ergy value. The parameter γV governs the effect of the gradient.
The higher the value of γV , the less severe the punishment and re-
wards are for values of δV . As with parameter γD , we experimented
with different values of γV , and found the subjectively best results
occurred with γV = 8.

Figure 4: Iterations from LBP. Top: one iteration; 20 iterations. Bot-
tom: 40 iterations; 60 iterations.

We minimized the energy of the unified energy formulation using
loopy belief propagation (LBP). Figure 4 shows the results of the
first 60 iterations of LBP on the sheep image. The image is still
changing slightly at this point; the final image is shown in Figure 1.
We consider LBP results to be final after 100 iterations. The initial
labeling is dominated by the data term, and as time goes on and
messages transmit information through the graph, the smoothness
term exerts a larger and larger influence over the results.

We are not completely satisfied with the LBP results. Although we
are usually able to get a somewhat reasonable segmentation, the
features in the final image appear blurred relative to the original
image content. Also, and critically for our goal of unsupervised
segmentation, we often need to resort to a trial and error process to
find good parameters for a given image (including iteration count).
Accordingly, we use the lessons from LBP to design a new energy
formulation to be minimized using graph cuts. Graph cuts were
found to be a better energy minimization framework than LBP on
a set of benchmark problems [Szeliski et al. 2006]. Details of this
endeavour are given next.

3.2 Detail-Oriented Segmentation

The above includes a data energy term penalizing differences be-
tween the original and final intensity values for each pixel. How-
ever, for our purposes, it is more important to preserve coherence
than to preserve the original color of large regions, especially back-
ground regions. We now propose a different energy formulation
intended to better preserve detail.

We determine for each pixel a signed quantity E describing its dis-

tance from the local mean:

E = µp − ip, (7)

where ip is the pixel value and µp is the mean in a local neighbor-
hood surrounding p (in our implementation, a square neighborhood
with radius 10). A positive E indicates a pixel below the average,
that should be labeled black; a negative E indicates a preference for
white. We allocate a probability r to a pixel as follows:

r =
1

2
e−zE2/2σ2

, (8)

where σ is the standard deviation of intensity values in the input im-
age. For normally distributed pixel intensities, comparing E to σ
provides a good characterization of whether an intensity difference
is strong or not. The parameter z allows us to adjust the trade-
off between the data energy and the neighborhood energy; larger z
means more attention to the data, while a smaller z leads to weaker
terminal links and correspondingly greater emphasis on coherence.
We used z = 1 in all single-stage segmentations; however, we will
use this parameter later, in the base plus detail energy formulation
presented in section 3.3.

The value r from equation 8 is the probability of the less likely
label; (1 − r) is the probability of the more likely label. Notice the
factor 1/2, needed because E is signed; an E of zero means that
both terminals have likelihood 0.5.

If we use the above probabilities to give energies directly, the result-
ing labelings are too noisy, since outlier pixels will have a large data
weight for one label. In consequence, we compute an attenuation
factor λ:

λ = 4e−E2/16σ2

. (9)

The value of λ decreases with larger E, meaning that the greater the
bias of a pixel towards one label, the more likely we are to disregard
that bias. This is counterintuitive, but has the effect of ensuring
that individual pixels, even with large values of E, still need the
cooperation of their neighbors (i.e., the data weight of an isolated
pixel cannot swamp the neighborhood weight). Small regions of
pixels, and (especially) step edges, will still have a large total data
weight, so that small and medium features can be shown in the
labeling. The data energies are given as follows:

Dbetter = λ(1 − r), (10)

and
Dworse = λr, (11)

where “better” and “worse” are with respect to the sign of E.

The smoothness energies are computed conventionally, based on
image gradient. For gradient magnitude g at the location in ques-
tion, the penalty for different labels is

Vpq(fp, fq) = e−g2/2σ2

, fp 6= fq. (12)

This is the neighborhood weight suggested by Boykov and
Jolly [2001]. A labeling for the detail-only energy formulation was
computed using graph cuts.

3.3 Base plus Detail

It is difficult to get both the appropriate level of noise reduction
and the desired amount of detail preservation simultaneously from
a single energy minimization. However, the energy terms we pro-
pose above have a natural division into global and local terms. In
this section, we discuss a method that tries to obtain better results
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by creating a base-layer image in parallel with a detail-layer image,
and then combines the two to create the final image. This design
philosophy follows the successful photo manipulation work done
by Bae, Paris, and Durand [2006], in which the bilateral filter pro-
vides a base/detail separation and the two layers are processed sepa-
rately before being merged into a single final image. The image pro-
cessing of Gooch et al. [2004] can also be considered a base/detail
separation; we will discuss differences between this method and
ours at the end of this subsection.

In Figure 2, we can see that adaptive thresholding is fairly effec-
tive at capturing details. Here, we propose a three-level classifi-
cation scheme: a pixel is classed as “definitely black”, “definitely
white”, or “don’t know”. We use the intensity variance over the en-
tire image to obtain our threshold for “don’t know”: pixels further
than a threshold away from the average value in their neighborhood
are known, while those within the tolerance are classed as “don’t
know”. The known values from this process form a detail layer,
while a base layer is obtained by an energy minimization with rel-
atively greater smoothness energy (a slightly modified equation 12:

Vpq(fp, fq) = e−kg2/2σ2

, fp 6= fq , with k = 4) and lower data
energy (z = 1/50, in equation 8). Our approach is summarized in
Figure 5.

The stronger neighborhood links produce a base layer with high
spatial coherence, but the details have been obliterated. We then
use the adaptive threshold technique to give us a detail layer. For
the results shown in this paper, we used threshold τ = q×σ, where
σ is the standard deviation of the intensities over the entire image,
and q is a parameter. We used q = 0.4 for all images. Note that
the pixel intensities are being compared against the mean value in a
local neighborhood, where we would expect the values not to vary
much; our choice of q represents a rather conservative threshold,
in the sense that only quite dramatic differences are preserved as
details. If desired, the user can change q, although we did not need
to for any of the examples we show.

Once the base and detail layers are built, we combine them with
a final energy minimizing labeling. Care must be taken with this
final step not to destroy the detail we have collected. We therefore
restrict the region to be labeled, as follows.

Where the detail layer provides us a known result, we take the data
energy from the local value. Where the detail layer has a “don’t
know” label, we take our data energy from the base layer. The
smoothness energy is taken from the intensity differences (equa-
tion 12). Then, we relabel only the detail region and a narrow band
around it (5 pixels wide in our implementation); this is shown as a
blue region in step 3 of the pipeline in Figure 5. Further from the
detail regions, the final values are taken directly from the base layer.
This composition step usually does not change the details that were
in the detail layer, but does in some cases slightly improve the re-
gion shapes. A particular form of improvement is when a potential
feature has a very weak gradient with the surrounding flat-colored
region; in such cases, these regions can be thinned to lines, such as
the line indicating the top of the sheep’s head and horns in the final
image in Figure 5.

Figure 6 shows base and detail examples for some test images. The
detail layer reintroduces the small features that were eliminated to
create the base layer, while the base layer provides sensible defaults
in regions where there are no details present. Even when details do
populate a region, the base layer gives a sensible background color;
the shape of the man’s face, and the structure of his mustache, are
emphasized by the differences in the base layer.

Arguably the closest previous algorithm to the one we described
above is that of Gooch et al. [2004]. In that work, a model of human

Figure 5: Base plus detail overview. Top: base layer from graph
cuts segmentation. Next: detail layer from 3-way threshold. Next:
extended detail regions for composition. Bottom: composed base
and detail.
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Figure 6: Base plus detail. Left to right: base layer; detail layer; combined base and detail.
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brightness perception motivated a detail term consisting of thresh-
olded brightness, where brightness was calculated as a sum over
multiple scales of differences of Gaussians. A base term, consisting
of thresholded luminance, was also used. The base and detail terms
were multiplied together to obtain the final black and white image:
white where both layers were white, and black where one or both
were black. In our case, we concentrated on getting a highly co-
herent base term, obtained by an energy-minimizing labeling, and
on composing the layers properly. For general images, a simple
product of the layers does not suffice: it is impossible to raise de-
tails out of dark regions of the image, since black regions cannot
be changed. Our system does permit light details to survive in dark
regions.

Our detail layer calculation (thresholded difference from mean) is
less sophisticated than thresholding multiscale brightness. How-
ever, we should note that one of the strengths of the base-detail
formulation is that the separation allows different processing, or
entirely different ways of computing the layers, to be adopted into
the algorithm.

4 Results

Figure 7: Original images.

In this section we show some additional results from applying our
algorithm to input images. While there are some parameters avail-
able to tune our algorithm, such as neighborhood size, we have
found that the default settings are robust for a variety of images.
The user may want to adjust the scale parameters in the final speckle
removal step. Also, the scheme allows the usual lightweight inter-
action method of user-assisted segmentation with graph cuts (set-
ting hard constraints), whenever graph cuts is used for energy min-
imization.

We can assess our results by evaluating to what extent we met our
initial goals. Recall that we wanted to preserve sharp features while
flattening out noise and background areas into single-color regions.
We ran our algorithm on a variety of images with different subjects,
different scales of details, and different contrast levels.

A collection of black and white image conversions is shown in Fig-
ure 8. We consider these to be successes; the figures or objects
in the scene are clearly recognizable, and subtle details have been

preserved. We are particularly pleased with the outcome of the cat
image, a difficult case because of the extremely low contrast be-
tween the cat’s body and the wall behind it. High frequency details
have been simplified, but remain present (such as in the beard of the
old man); where the image is not changing much, the results from
both detail-oriented segmentation and base plus detail have a single
solid color.

Our completely automated approach leaves us with some limita-
tions. Because we have been fairly cautious in setting the size of
regions to be removed (keeping even quite small regions so as to
preserve small high salience details such as people’s eyes) we some-
times retained spurious regions, such as in the top left of the sphinx
image. The images also excessively preserve background detail, as
seen in the mountains of the sheep image. An artist would doubtless
make different decisions about which parts of the image are impor-
tant, and indeed, minor human-assisted postprocessing can elimi-
nate the specific problems we mention. However, in the absence of
human intervention, these results are credible.

We can also compare the results of the different energy formula-
tions. From the standpoint of our initial goal, preserving details
while eliminating background, we believe the results of the detail-
oriented segmentation superior to those of the unified segmentation.
Details are more sharply resolved in the detail-oriented case. The
unified images possess a uniform style which observers have char-
acterized as “soft”, “dreamy”, or “melted”. While not all of these
terms are entirely flattering, the consistent style of the unified im-
ages is one virtue of the technique.

The main reason for the difference between the unified and detail-
oriented results is the use of a global energy term in the unified
energy and the absence of this term in detail-oriented. In the portrait
image, for example, the top left area is darker than the average, so
the global term pushes it towards black; in the detail-oriented case,
we have no such pressure, so the minimization allows it to be flat
colored.

Lastly, we believe that the base plus detail algorithm produces the
best quality results of all. Both coherence and detail preservation
are better than in either of the other two algorithms. The main lim-
itation of our methods, common to all three algorithms presented,
is in their application to highly textured areas. The base plus de-
tail algorithm faithfully preserves the textures, such as the hair of
the sheep and the old man’s beard; the two energy minimization
approaches attempt to simplify the texture by merging regions to
reduce boundary length, with not entirely satisfactory results. Tex-
ture simplification is an outstanding problem in image abstraction
and we have not solved it here.

We report graph cuts times relative to a 3.0GHz P4 with 1GB RAM,
while LBP times are relative to an Intel Core Duo 2 E6300 with
each core at 1.86 GHz, and 2 GB RAM. LBP was terminated after
100 iterations of message passing. All images were of size 512 ×
512. Under these conditions, graph cuts produces results in about 2
seconds per image, while LBP takes about 20 seconds. Graph cuts
is thus roughly an order of magnitude faster than LBP. The results
from the base plus detail algorithm require two iterations of graph
cuts, executing in about 4 seconds, although a good approximation
of the final image (doing a trivial compositing step) is available after
2 seconds.

5 Conclusion

In this paper, we have presented an algorithm for converting in-
put photographic images into stylized black and white images. The
core of the algorithm is the segmentation from energy minimiza-
tion, for which we have implemented graph cuts and loopy belief

56



Figure 8: Image conversion results. Left to right: labeling with unified energy; labeling with detail-oriented energy; base plus detail. Top to
bottom: portrait; cat; old man; sphinx.
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propagation. We were able to achieve superior results using graph
cuts. Following this success, we devised a base plus detail formula-
tion that uses local thresholding to produce a detail layer, and graph
cuts to get a base layer and to merge the base and detail layers to-
gether. The spatial coherence and detail preservation capabilities of
this final algorithm are better than either of the single-stage algo-
rithms.

The images our method produces have considerable detail where
there were high or medium contrasts in the original image, and
are solid colored elsewhere. This provides an abstracted black and
white version of the input, and allows us to automatically produce
images reminiscent of some scratchboard or inked images. Our al-
gorithms were tested on images with different levels of contrast and
different quantities of texture, and found to be robust over a range
of image characteristics.

There remain avenues for future work. Likely the most significant
of these is texture indication, a longtime problem in image abstrac-
tion. Reliance on contrast produces overrepresentation of texture
edges (low salience details). In the context of this work, the ques-
tion may be framed thus: can we construct energy functions that
distinguish between texture edges and feature edges?

We would like to improve our discrimination of foreground and
background regions, in part to eliminate background textures from
the final image, and one cue to doing this is blur. Professional pho-
tographs often use a relatively narrow depth of field, so that only the
subject is in focus. If we can assume that the background is blurred,
we may be able to consider that when creating our detail layer and
thus avoid preserving less-salient background details.

Furthering the goal of converting images to black and white, we
can consider converting color images. Color opponency can give
us additional contrast information and potentially provide a label-
ing with better detail. We might also consider image sequences.
The present system processes individual images independently, and
minor changes to the image content can cause entire sections to flip
from black to white. For coherent image sequences, it is necessary
to consider information from surrounding frames, perhaps biasing
the energy locally by the labeling at the previous frame.
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