
Terrain Synthesis Using Curve Networks
Maryam Ariyan∗ David Mould†

Carleton University

Figure 1: Curve networks used to construct a mountain peak.

ABSTRACT

We present a procedural technique for the controllable synthesis of
detailed terrains. We generate terrains based on a sparse curve net-
work representation, where interconnected curves are distributed
in the plane and can be procedurally assigned height. We employ
path planning to procedurally generate irregular curves around user-
designated peaks. Optionally, the user can specify base signals for
the curves. Then we assign height to the curves using random walks
with controlled probability distributions, a process which can pro-
duce signals with a variety of shapes. The curve network partitions
space into individual patches. We interpolate patch heights using
mean value coordinates, after which we have a complete terrain
heightfield. Our algorithm enables user to obtain prominent fea-
tures with lightweight interaction. Increasing the density of curves
and roughness of curve profiles adds detail to the synthetic terrains.
The curves in a network are organized into a hierarchy, where the
major curves are created first and the curves constructed at later
stages are affected by earlier curves. Our approach is capable of
producing a variety of landscapes with prominent ridges and dis-
tinct shapes.

Index Terms: 1.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Modeling;
1.3.7 [Computing Methodologies]: Computer Graphics—Three-
Dimensional Graphics and Realism;

1 INTRODUCTION

Terrains are visible in artistic paintings, computer games, and CGI
movies. Terrains can be created with manual modeling tools such as
Maya [1] or Blender [2]; such tools provide complete control over
the output model but demand a high degree of user involvement and
expertise.

Conversely, procedural techniques employ algorithms to produce
3D models and textures with little or no input [6]. The challenging
aspect of procedural terrain synthesis is to control the result based
on the input parameters.

Sketch-based modeling (SBM) methods occupy a middle ground
between fully manual and fully procedural techniques. SBM meth-
ods for terrain synthesis create terrain surfaces subject to user-
drawn constraints. Sketch-based techniques demand less user
involvement than manual methods and, compared to procedural
methods, provide better control over terrain feature placement.

∗maryam@ariyan.net
†mould@scs.carleton.ca

However, the interpolated terrain surfaces exhibit less detail than
the inherently rough-looking real-world terrains.

Our goal is to make controllable and realistic landscapes with
minimal user intervention. Terrains exhibit intricate detail. There
is a trade-off between user effort and the quantity of detail when
modeling terrain using manual or sketch-based methods. We can
reduce manual effort and get detailed models by using procedural
methods but we still need some mechanism to provide high-level
control over the terrain structure. We introduce curve networks as
a framework for organizing the terrain construction and as a useful
entry point for user-specified terrain features. We intend the curve
networks to reflect directly the structure of the terrain, with promi-
nent ridges extending outward from mountain peaks; between the
ridges, the terrain is somewhat flat or dips down slightly. Focussing
the modeling effort on the ridges is desirable as the ridges and as-
sociated silhouettes are also the most perceptually salient aspects
of the terrain. In effect, we have reduced the dimensionality of the
problem: we specify a terrain as a collection of 1D strokes rather
than as a 2D surface. The same insight is behind the area of sketch-
based modeling.

The idea is illustrated in Figure 1. The terrain begins as a set
of isolated peaks; there might only be one peak, or there could be
many. Each peak extends a network of curves into its surroundings.
Height profiles are assigned to each curve; the patches surrounded
by curve elements are then filled in, creating the complete terrain.

In this paper, we concentrated on the procedural aspect of the
problem. We make two main contributions. First, we propose the
curve network representation for terrain synthesis, including a pro-
cedural system for creating curve networks. Second, we present
a scheme for synthesizing 1D signals to apply to the curves, us-
ing random walks at multiple scales to produce detailed structures;
changing the probability distribution of the random walk produces
different types of structures. A secondary contribution is the use of
mean value coordinates for patch interpolation; because our patches
are surrounded by closed polygons, we can directly evaluate inte-
rior heights. We discuss the use of and advantages of mean value
coordinates later in the paper.

The remainder of this paper is organized as follows. We discuss
previous work in Section 2. In Section 3, we give details of the
entire terrain synthesis algorithm, including the processes for gen-
erating curve networks and for generating interesting profiles using
random walks. In Section 4, we show a selection of results, both ter-
rains and profiles. Section 5 contains our discussion of the results,
comparison with earlier techniques, and comments about advan-
tages and disadvantages of the approach. We conclude in Section 6
with a summary and some plans for future work.



2 PREVIOUS WORK

Broadly speaking, methods for terrain synthesis can be divided into
procedural methods and sketch-based methods. Example-based
techniques generally fall into the procedural category, although
sketch-based terrain editing techniques such as that of Tasse et
al. [21] can be considered example-based.

Terrain is commonly represented as a height field: a surface with
a unique height value per 2D point. Height fields cannot represent
features such as caves and overhangs, but are popular despite this
shortcoming owing to the simplicity and convenience of the repre-
sentation. A recent effort to move beyond height-field terrains is
due to Peytavie et al. [17], who combine implicit and discrete volu-
metric representations to produce terrains with complex topology.

Influential work on procedural terrain synthesis is due to Mus-
grave et al. [15], who proposed multifractal fractional Brownian
motion (fBm). In their method, multiple frequencies of Perlin
noise [16] are summed to create a terrain:

h(x) =
n

∑
i=1

N(x ·2H·i)/Li (1)

where N(x) is the Perlin noise function, H is the fractal increment
parameter, and L is called lacunarity. Varying H and L spatially or
by height produces plausible landscapes. We use a similar formula-
tion in our own work, but substitute a customized random walk for
Perlin noise.

More recent procedural work builds on example-based texture
synthesis [8, 7]. Zhou et al. [22] and Brosz et al. [4] rearranged
patches from a terrain database to create novel terrains. These meth-
ods produce high-quality results, but depend on a database of terrain
features.

Distance fields and distance transforms are a potentially useful
primitive for terrain and texture synthesis. Rusnell et al. [20] used
distance in a weighted graph to create terrains directly; we borrow
many of their ideas for this paper. In an effort related to terrain syn-
thesis, Peytavie et al. [18] used the distance transform to synthesize
piles of rocks.

Sketch-based modeling is another approach for generating ter-
rains. The first dedicated system for sketch-based terrain is due
to Gain et al. [11], who present a sketching framework for ter-
rain synthesis that allows the user to sketch ridge contours and
silhouettes of landscapes from different 3D views. The system
automatically completes the terrain from the user-sketched hints.
Hnaidi et al. [13] generate a variety of terrain features such as
ridgelines, riverbeds, hills, and cracks. Dos Passos and Igarashi [5]
presented LandSketch, an example-based technique that fits terrain
landscapes to silhouette strokes as seen from a first person view-
point. Tasse et al. [21] also present a sketch-based terrain editing
technique from the first person point of view. Tasse et al. also ex-
plore methods to estimate depth information from t-junctions vis-
ible in the sketched contours. All these techniques makes use of
Poisson blending to populate the space between user-sketched fea-
tures. Other interpolation mechanisms are possible, such as radial
basis functions, used by Brazil et al. [3] in sketch-based modeling.
However, Poisson blending seems to be the most popular approach
at present.

Poisson interpolation involves solving a global system of lin-
ear equations, with one equation per pixel; although the system
is sparse, it nonetheless scales poorly for large terrains. Farbman
et al. [9] suggest that Poisson interpolation is slower than the di-
rect interpolation enabled by mean value coordinates (MVC) [10].
In MVC, the value of each point in the interior of a polygon, is
calculated based on a weighted sum of the values of the polygon
vertices. In our method, we create ridges and assign heights proce-
durally, then use MVC to determine height values for the rest of the
terrain surface.

Our own approach is primarily procedural, but we can consider
it to be the back end for a restricted sketch-based modeling system.
We have not much investigated possible sketch-based elements of
the system to date, however, having concentrated on the procedural
aspect. We describe our system in detail next.

3 ALGORITHM

We present an algorithm which creates mountains based on the
placement and steepness of mountain peaks, and then procedu-
rally adds ridge detail to the undefined terrain between the peaks.
The algorithm consists of three main steps. First, we construct
a curve network, consisting of primary curves extending outward
from the peaks and secondary curves linking pairs of adjacent pri-
mary curves. Second, we assign heights to points on the curve
network; we propose a random-walk-based procedural method for
creating rough signals. Third, we fill in the patches bounded by
curves, using mean value coordinate interpolation to obtain height
values. The above process is illustrated in the teaser, Figure 1: a
single peak is shown, from which an initially planar curve network
extends. Heights are assigned to the curves, and the patches filled
so as to create a complete height field. Of course, it is possible
to use more than one peak; a sample curve network with multiple
peaks is shown in Figure 2. Even in the case of multiple peaks,
most of the detail in the terrain is present on the ridges, as the fig-
ure demonstrates: the silhouette only involves 2-3 peaks, but has a
jagged shape owing to the random walk. We discuss each stage of
the algorithm in more detail in the following subsections.

Figure 2: Above: curve network; sample primary profile. Below: re-
sulting terrain.

3.1 Curve network generation
Our intent is to create a curve network consisting of primary curves
spreading out from peaks and secondary curves approximately per-
pendicular to primary curves. The primary curves can represent
structural details, especially ridges; the secondary curves will add
further roughness and can help shape the terrain, for example by
sloping downwards away from ridges. We use Dijkstra’s algo-
rithm to solve the single-source shortest path problem through a
4-connected graph where each node is a cell at the intended reso-
lution of the terrain. Graph edges have random weights, producing
irregular paths.

Each peak will mark a region of surrounding nodes to which it
is closest, resulting in a Voronoi-like partition of the graph. We
distribute endpoints along the boundary of each region according
to a user-specified spacing; then, we trace least-cost paths back-
wards towards the peak using the distance values previously com-



puted. Optionally, we can use a second pass of Dijkstra’s algo-
rithm to compute new distances, if the user wants to change the
edge weights; one application of this idea is to make edges cheaper
near the boundary and more expensive further away, so as to obtain
paths that are approximately perpendicular to the boundary.

The above process produces the primary curves. Subsequently,
we create secondary curves by computing a new pass of Dijkstra’s
algorithm, starting with all points on each primary curve at distance
zero. Doing this produces an irregular partition of space with each
primary curve having its own region; boundaries approximately bi-
sect the space between adjacent primary curves. We then construct
secondary curves by choosing a spacing along these region bound-
aries and tracing back in both directions to the primary curves.

3.2 Profile generation
Having constructed curve networks, we next assign heights to all
network points. We refer to the elevation along a curve as a height
profile. Since primary curves are irregular paths connecting region
boundaries to peaks, we can exert control over the overall terrain
shape by specifying the height profile of primary curves.

For each curve, we can employ a 1D interpolation to set the
height profile, given that the elevations of endpoints are known.
We obtain an initial estimate of the region boundary heights by tak-
ing h(x) = hp− k · c(x): the height h of point x with cost c(x) is
an elevation k · c(x) below peak height hp, for a constant k. We
can then modify this estimate by using a random walk to displace
the heights, as described below. Alternatively, we can do some-
thing much simpler such as setting the boundary heights to zero.
Once the boundary heights are known, we can use them to inter-
polate the heights of the primary curves; in turn, once the primary
curves have known profiles, we can interpolate the profiles of the
secondary curves.

We interpolate heights along the path of a curve element by refer-
ring to heights of each curve’s endpoints. The simplest approach is
linear interpolation. Other kinds of interpolation are possible, e.g.,
splines. However, we intend to construct more stochastic height
profiles so as to reflect the roughness of rocky, mountainous ter-
rains. To get a rough interpolation, we employ random walks to
compute profiles.

Recall that Musgrave et al. used multiple instances of Perlin
noise to obtain height fields, as shown in equation 1. We use the
same formulation, but substitute a random walk for Perlin noise:

h(x) =
n

∑
i=1

Ri(x ·2H·i)/Li. (2)

In the preceding, H is the fractal increment and L is lacunarity as
before; we sum n octaves to obtain the signal. The difference be-
tween equations 1 and 2 is the use of a random walk R(.) in the
latter, compared to Perlin noise N(.) in the former.

A random walk is an incrementally constructed signal: the sum
of a sequence of random samples. A random position after x steps
can be computed as follows:

R(x) = p0 +
x

∑
i=1
〈p〉, (3)

where 〈p〉 is a random sample drawn from probability distribution
p. Note that the above is only defined for integer x; for real x,
compute R(bxc) and R(dxe) and interpolate between them. Also
note that, as written, R(x) is not stable on repeated evaluations; in
practice, we compute a single random walk for each profile and
store it.

The advantage of using a random walk is that we can obtain dif-
ferent shapes by sampling from different probability distributions.
Consider the “drunkard’s walk”, illustrated in Figure 3, where there

is a 50% likelihood of a positive increment and a 50% chance of
a negative increment. The resulting signal fluctuates quickly. A
Gaussian PDF centred at zero, conversely, has a high likelihood
of a small or zero increment, and hence changes slowly. Figure 4
shows four random walks generated from a Gaussian PDF.

Figure 3: Above: probability distribution (as a histogram); below: four
random walks from this distribution.

Figure 4: Above: Gaussian PDF (histogram); middle: cumulative
distribution; bottom: four random walks generated from the PDF

In general it is not feasible to directly sample from the proba-
bility density function. We use the cumulative distribution function
(CDF), which describes the probability C(x) that a sample from the
distribution is less than or equal to x. Figure 4 illustrates the CDF
of the Gaussian PDF. Unlike the PDF, the CDF is directly invertible
and hence we can use it to sample from the input PDF. We compute
the CDF by summing a discretized record of the PDF; this allows
us to work directly with arbitrary PDFs, including those drawn by
hand by a user. We consider some potentially useful PDFs in the
next section.

Recall that we do not use a single random walk, but rather mul-
tiple random walks at different scales, according to equation 2. We
consistently used H = 1 and L = 2 throughout the results we show.
An example of the multiscale random walk is shown in Figure 5;
here we used a user-drawn distribution with a large mode near zero
and another mode far on the negative end. We automatically de-
bias the distribution so that its long-range mean is zero, and the
resulting random walk has a gentle but varied upward slope punc-
tuated by sudden steep downward increments. We consider this
shape to have a pleasing, natural-seeming balance of predictability
and unpredictability. The sum of four octaves produces an overall
structure with detail at different scales and apparent features.

It is not in general possible to directly interpolate fixed endpoints
with a random walk: we can start at one endpoint, which would be
p0 in equation 3, but we cannot predict what the value will be at
the other endpoint. To make both endpoints line up, we compute a



Figure 5: Top: user-drawn probability distribution; middle: four ran-
dom walks with decreasing amplitudes and increasing frequencies;
bottom: sum of the four octaves, to be used as a height profile.

random walk of the desired length, and find the delta between the
desired endpoint and the random walk’s ending value. Then, we
correct for the mismatch by linearly interpolating the delta along
the length of the random walk.

3.3 Interpolation of patch interiors

A curve network partitions space into separate patches bounded by
the curves; curves have known height values after assigning pro-
files. The next step is to find heights for points in the patches. For
this step, we use mean value coordinates [10] (MVC). MVC has
several desirable properties: it allows interpolation over arbitrary
polygons, even non-convex polygons; interior points depend only
on points on the boundary; and both random access and arbitrary
resolution are possible, i.e., any interior point can be evaluated in-
dependently from the others without reference to any underlying
discretization of space.

For each patch, we use boundary tracing [12] to find an ordered
list of the border points. This set of points then form the polygon for
MVC interpolation. We used the algorithm given by Hormann and
Floater [14] to evaluate heights at the interior points as a weighted
sum of the heights along the boundary. Once the heights of all inte-
rior points of all patches have been computed, we have a complete
height field, ready to be rendered.

4 RESULTS

Next we present synthetic terrains that are produced using our ap-
proach. First we discuss the role of different elements of our al-
gorithm in getting varied shapes of terrain. Then we present ter-
rains along with real-world terrain images to show the versatility of
our approach in generating realistic terrains. We then compare our
approach with related methodologies which have either similar ap-
proaches to the problem of terrain synthesis or exhibit comparable
control over the shape of terrains. Then we provide the timing of
the different elements of our algorithm.

We implemented our algorithm in C++ running on a 64-bit Intel
dual Core i7 CPU 2.40 GHz (and 1.9 GHz) with 8 GB RAM. The
output from our program is a heightfield; we used Terragen [19]
to render terrains. The renderings contain small-scale displacement
noise with no textures on top of the surfaces.

Our algorithm is composed of three main stages: curve net-
work construction, height profile assignment on curve elements,
and patch height interpolation. We exert control over the shape
of terrains by constructing different types of curve networks and by
assigning profiles to curves. In this section, we demonstrate dif-
ferent terrains that can be created procedurally using our method.
Figure 6 we show a collection of terrain examples. Collectively,
the terrains show the range of features we can straightforwardly
produce. Particularly take note of the irregular silhouettes, created
using few peaks; the rough terrain surfaces, with detail oriented ap-
proximately vertically (away from the peaks); and the heterogeneity
of the visible structures, created by the combination of curve net-
works and the application of various probability distributions along
the curves. Figure 7 shows comparisons with photographs of real-
world terrains; similar structures can be seen in the corresponding
synthetic terrains.

One of the ingredients for creating the terrains is the probability
distribution that governs the random walk for the curve profiles.
We show a few examples of probability distributions and sample
resulting random walks in Figure 8. Each probability distribution
was sketched manually; the graphs show both the distributions (as
histograms of possible increments) and an example random walk.

The topmost example shows a simple PDF: it is akin to the
drunkard’s walk, but with broader distributions over the positive
and negative outcomes. The resulting walk is similar to the original
drunkard’s walk but with a wider range of slopes apparent.

The second example is an arbitrary user-drawn distribution. The
resulting walk has a range of slopes, with visible structural elements
resembling notches and plateaus. Because the original sketch was
biased, with more likelihood of obtaining a positive increment than
a negative one, we automatically debias it by incrementally reduc-
ing the histogram entries on the heavier side until the two are in
balance.

The third example shows a trimodal distribution with a large
mode near zero and small modes at large slopes. The resulting walk
has a range of slopes, with visible structural elements resembling
notches and plateaus. Because the original sketch was biased, with
more likelihood of obtaining a positive increment than a negative
one, we automatically debias it by incrementally reducing the his-
togram entries on the heavier side until the two are in balance. The
last example shows a variant of the same trimodal distribution with
larger tails: the resulting random walk is flat in places but is overall
much more jagged than the previous profile.

5 DISCUSSION

Here, we will discuss some attributes of our method and give com-
parisons to terrains created with previous methods.

5.1 Comparisons

The previous work most similar to ours is that of Rusnell et al. [20],
who proposed Dijkstra-based distance calculations for height field
synthesis. They created an entire height field with a single Dijkstra
pass, obtaining unified terrains but with limitations on the shape
of features: in their terrains, heights monotonically decrease with
distance to the peaks. Our approach separates the ridge placement
from the profile assignment, and our customized random walks of-
fer more detail and variety than the silhouettes seen in the terrain
from Rusnell et al. Figure 9 shows a side-by-side comparison.

Gain et al. created the first sketch-based terrain synthesis sys-
tem, and we compare against it in Figure 10. We created the same



Figure 6: Several synthetic terrains made using our system.



Figure 7: Real terrains. Above: Navarino; middle: Karakoram; below:
Aleutians.

Figure 8: Four example probability distributions and random walks.
Each example contains a user-drawn probability distribution (above)
and a sample random walk from the distribution (below).



Figure 9: Above: Rusnell et al.’s result. Below: our result.

dome shape (centre) and somewhat irregular silhouettes (right, mid-
dle left) but our islands have vastly more detail. Gain et al. suggest
some detail by applying a texture, but the terrain surface is smooth,
a consequence of their Poisson blending between sparsely sketched
strokes. Our silhouettes are more intricate than the silhouettes seen
in their result, since our procedural profiles have multiple octaves
of random noise, while theirs come from pen strokes: it would take
an inordinate amount of human attention to add this much detail.

Figure 10: Above: Gain et al.’s result. Below: our result.

Hnaidi et al. offer a more recent and sophisticated terrain sketch-
ing system, also based on the Poisson equation. They use Perlin
noise to add detail to an otherwise smooth terrain, but their results
do not have the level of detail or heterogeneity that ours exhibit. A
direct comparison can be seen in Figure 11.

We omitted a comparison with Tasse et al. since they are doing

Figure 11: Above: Hnaidi et al.’s result. Below: our result.

terrain editing, not synthesis: their work is not intended to create
novel terrains, unlike ours. Therefore, they did not seek to add
any detail: their output terrains can be quite detailed without any
extra effort, as they preserve most of the details in the input terrains.
Because of the dissimilarity in our goals, we did not believe that a
direct comparison would be very informative.

5.2 Timing

A typical run of the system at a resolution of 400×400 takes four
to eight minutes. The majority of this time (about three quarters)
is due to the patch interpolation; the rest is in the curve generation.
Profile generation takes less than one second. The variability is due
to variation in patch sizing: smaller patches (with fewer boundary
points per patch) are faster to compute on a per-pixel basis.

Timing is with respect to a severely non-optimized implemen-
tation; we are confident that simply by streamlining the code we
would be able to eke out at least an order of magnitude speedup,
probably more. Even in its current form, the system is usable, albeit
stretching the limits of a user’s patience for an interactive system.

Because the method is procedural, there is minimal human ef-
fort: only a few seconds are needed to choose peak positions and
random walk properties. Even the peak placement could be auto-
mated, although we have opted not to spend much attention investi-
gating this idea. Of course, to obtain an appealing synthetic image,
scene composition and lighting require time and attention.

Unlike other procedural methods, with our approach, the user is
able to direct the terrain more closely if desired. The profile of any
curve can be set manually instead of procedurally. We have not
explored this possibility, but it seems that the curve network itself
could be constructed manually if desired. The process we describe
can be calibrated to the user’s desired level of involvement, from
virtually none to specifying many curve properties, and a plausible
terrain can be completed given any level of user input.

5.3 Advantages and Limitations

There are several advantages to our method. It is procedural, but
the user can step in to supply information at various levels of detail



if desired. The use of random walks affords us flexibility in gen-
erating different shapes of profiles. We did not explore it in this
paper, but we can make use of the H and L parameters to create
multifractal terrains as Musgrave et al. did [15]. However, H and
L are difficult to tune to produce the desired appearance, and spa-
tially varying them is an even greater challenge; conversely, we can
alter the profile settings spatially or on a curve-by-curve basis, as
desired.

Our use of mean value coordinates rather than Poisson blending
is intended to be fast. The speed advantages of MVC do not man-
ifest in our implementation, but in general, we believe MVC to be
a better option: it has better scalability, it allows local evaluation,
and it allows evaluation at arbitrary resolution. Our curve networks
create the bounded patches necessary for MVC.

Our method has some limitations. It is restricted to heightfield
generation. In its present implementation, it is slow. Creating pro-
files by sketching probability distributions is indirect; the process is
inscrutable to novice users.

Our philosophy of primary curves representing ridges is suitable
for the mountainous terrains we showed, but is not as well suited to
other types of terrains or terrain features, especially flat and smooth
terrains such as hills and swamps. Poisson-based terrain synthe-
sis is already well-suited to smoother terrains; we have sought to
make it easy to make rugged terrains, at the possible expense of the
generality of the method.

6 CONCLUSION

This paper proposed curve networks for terrain synthesis, where a
hierarchy of curves is created in 2D, then heights are procedurally
assigned to points on curves. and a terrain surface is interpolated
from the sparse curves. We used a random walk mechanism to
create rough terrains, controllable through user-specified probabil-
ity distributions. The division of labor between curve placement,
curve profile creation, and surface interpolation is helpful. The use
of mean value coordinates for interpolation allows local evaluation
and we expect that it can be faster than the popular alternative of
Poisson interpolation, following the direction of Farbman et al. [9].

Our method controls both large-scale and fine-scale detail of ter-
rain models. We can control the placement of peaks and other ter-
rain properties such as roughness and ridge shapes and we can pro-
duce structural and prominent ridge detail around input peaks and
ridges. We generate realistic rough terrains by increasing the den-
sity of curves or by making rough random walk curve profiles in the
gaps between the scattered input peaks. We can control the shape of
ridges outwards from peaks by specifying base profiles for curves
onto which we superimpose smaller-scale random walks.

Some challenges remain for future work. Multiscale path plan-
ning would allow faster terrain construction and higher-resolution
terrains. We would like to incorporate example-based synthesis
by drawing the profiles from exemplars or synthesizing profiles by
connecting exemplar fragments, a task easier in 1D curves than 2D
terrains. It would be worthwhile to have roughness within patches,
rather than interpolate smoothly; a step in this direction would be to
create a deeper hierarchy with smaller patches. Overall, we believe
that the curve network mechanism will be a useful basis for further
work in terrain synthesis.

ACKNOWLEDGEMENTS

The authors wish to thank the anonymous reviewers and our col-
leagues in GIGL for their helpful suggestions . This work was
supported by NSERC and by the GRAND NCE. Photos were pro-
vided by flickr users “El Guanche” (Navarino), Stefanos Nikologia-
nis (Karakoram), and Allan Shimada (Aleutians).

REFERENCES

[1] Autodesk. Maya. http://www.autodesk.com/products/
maya/overview. [Accessed: 2014-10-30].

[2] Blender Foundation. Blender. http://www.blender.org/.
[Accessed: 2014-10-30].

[3] E. Brazil, I. Macedo, M. C. Sousa, L. H. de Figueiredo, and L. Velho.
Sketching Variational Hermite-RBF implicits. In Proceedings of the
Seventh Sketch-Based Interfaces and Modeling Symposium, pages 1–
8. Eurographics Association, 2010.

[4] J. Brosz, F. F. Samavati, and M. C. Sousa. Terrain synthesis by-
example. In Advances in Computer Graphics and Computer Vision,
pages 58–77. Springer, 2007.

[5] V. A. dos Passos and T. Igarashi. LandSketch: A first person point-of-
view example-based terrain modeling approach. In Proceedings of the
International Symposium on Sketch-Based Interfaces and Modeling,
pages 61–68. ACM, 2013.

[6] D. S. Ebert. Texturing & modeling: A procedural approach. Morgan
Kaufmann, 2003.

[7] A. A. Efros and W. T. Freeman. Image quilting for texture synthe-
sis and transfer. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 341–346. ACM,
2001.

[8] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric
sampling. In Computer Vision, 1999. The Proceedings of the Sev-
enth IEEE International Conference on, volume 2, pages 1033–1038.
IEEE, 1999.

[9] Z. Farbman, G. Hoffer, Y. Lipman, D. Cohen-Or, and D. Lischin-
ski. Coordinates for instant image cloning. In ACM Transactions
on Graphics (TOG), volume 28, page 67. ACM, 2009.

[10] M. S. Floater. Mean value coordinates. Computer aided geometric
design, 20(1):19–27, 2003.

[11] J. Gain, P. Marais, and W. Straßer. Terrain sketching. In Proceedings
of the 2009 symposium on Interactive 3D graphics and games, pages
31–38. ACM, 2009.

[12] R. Gonzalez and R. Woods. Digital image processing. Pearson Pren-
tice Hall, 2008.

[13] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin. Fea-
ture based terrain generation using diffusion equation. In Computer
Graphics Forum, volume 29, pages 2179–2186. Wiley Online Library,
2010.

[14] K. Hormann and M. S. Floater. Mean value coordinates for arbitrary
planar polygons. ACM Trans. Graph., 25(4):1424–1441, Oct. 2006.

[15] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and render-
ing of eroded fractal terrains. In ACM SIGGRAPH Computer Graph-
ics, volume 23, pages 41–50. ACM, 1989.

[16] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985.

[17] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou. Arches: A frame-
work for modeling complex terrains. In Computer Graphics Forum,
volume 28, pages 457–467. Wiley Online Library, 2009.

[18] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou. Procedural gen-
eration of rock piles using aperiodic tiling. In Computer Graphics
Forum, volume 28, pages 1801–1809. Wiley Online Library, 2009.

[19] Planetside Software. Terragen. http://planetside.co.uk/.
[Accessed: 2014-10-30].

[20] B. Rusnell, D. Mould, and M. Eramian. Feature-rich distance-based
terrain synthesis. The Visual Computer, 25(5-7):573–579, 2009.

[21] F. P. Tasse, A. Emilien, M.-P. Cani, S. Hahmann, and A. Bernhardt.
First person sketch-based terrain editing. In Proceedings of the 2014
Graphics Interface Conference, pages 217–224. Canadian Informa-
tion Processing Society, 2014.

[22] H. Zhou, J. Sun, G. Turk, and J. M. Rehg. Terrain synthesis from
digital elevation models. Visualization and Computer Graphics, IEEE
Transactions on, 13(4):834–848, 2007.


