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Abstract Dendritic or branching structures are com-
monly seen in natural phenomena such as lightning, cracks,
and vegetal growth. They are also often used for artis-
tic or decorative purposes. We present a new procedu-
ral method for modeling dendritic structures based on a
path planning approach. Our method includes the use of
a partial non-scalar distance metric that gives us pow-
erful and responsive control over the evolving dendritic
structure. We demonstrate the effectiveness of our ap-
proach by creating dendritic stylizations of input images.
We also show how our approach can be used to model
more complex dendritic structures, such as trees; our al-
gorithm allows us to create pareidolia effects, where an
image is embedded within the branches of the tree.

Keywords Non-Photorealistic Rendering · Modeling ·
Dendritic Structures · Tree Modeling · Pareidolia

1 Introduction

A dendritic or branching structure is found in many
objects that appear in nature, such as lightning, frost,
cracks, and many forms of vegetation. Dendritic struc-
tures have also long been used for ornamental and deco-
rative purposes; illuminations are an example of a tradi-
tional medium that employs vines and other floral mate-
rial to create an artistic effect. In addition to decorating
letters and ceramics, such branches are also sometimes
used to make aesthetic patterns [36] or to convey an im-
age [20,37].

Effectively modeling dendritic structures remains a
challenge for computer graphics researchers. The results
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generated by existing procedural methods, while at times
compelling, are notoriously difficult to control and ex-
pensive to compute. We present a new procedural tech-
nique for modeling dendritic structures using path plan-
ning. The use of an alternate distance metric for the
path planning algorithm allows for effective control over
the evolving structure, and the long winding paths that
result are suitable for artistic effects.

We apply our technique to dendritic stylization, where
an input image can be embedded into a dendritic struc-
ture and then rendered using different sorts of dendritic
metaphors. We also show how our modeling method can
easily be modified to generate trees whose branches con-
vey the structure of an input image. In addition to the
above, we believe our method holds potential for other
artistic media where exacting precision is required, such
as line art, ceramics, and decorative mazes, to name only
a few.

Our method rests on an adaptation of a non-scalar
distance metric first proposed by Pai and Reissel [19].
Our variant is faster and less memory-intensive, while
still being well suited to generating dendritic structures.
We show how our method can create stylized dendrites
from input images, where the structure of the image is
conveyed by the dendrite: a novel form of non-photorealistic
rendering. Furthermore, our method is versatile, and can
generate different sorts of dendritic structures, such as
vines and lightning, without requiring significant changes
to the modeling process. Finally, we show how to use our
method to create stylized trees partly shaped by input
images, so that both the tree and the image’s subject
are visible to a viewer. Naturally occurring forms of this
kind of illusion are sometimes called pareidolia.

In the next section, we discuss related and previ-
ous work in the relevant areas of dendritic structures,
path planning, halftoning, and tree modeling. Section
three will introduce our method for modeling dendritic
structures using path planning, in addition to showing
how we can use the partial non-scalar distance metric to
achieve superior control characteristics. Section four de-
scribes our process for dendritic stylization. We extend
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our modeling framework in section five to model non-
photorealistic trees such as the ones that are commonly
seen in landscape paintings. We discuss conclusions and
future work in section 6.

2 Related Work

2.1 Dendritic Structures

Initial work on the procedural modeling of dendritic struc-
tures drew much inspiration from research into fractals.
Fractals have often been used to model complex natural
phenomena, such as trees and snowflakes [6]. Because
of their success in this area, many attempts were made
to adapt fractal generation methods for use in modeling
dendritic structures. This led to the use of Lindenmeyer-
Systems (L-Systems) [23,24].

An L-System can be described as a replacement gram-
mar that evolves initial axioms using a set of produc-
tion rules over discrete derivation steps in order to cre-
ate recursive structures [23]. Later, context-sensitive L-
Systems [14] were developed, which use the spatial po-
sition of the branches to assist in determining the pro-
duction rule that should be used. However, control by
designing production rules remains unintuitive, as the
effect of small changes to the production rules can be
unpredictable.

The growth of dendritic structures has also been stud-
ied within the context of ornamentation. Wong et al. [36]
introduced their own grammar for creating ornamenta-
tion. Though similar in concept to L-systems in that it
involves elements and production rules, this method fea-
tures the serial processing of rules as opposed to the par-
allel processing seen in L-systems.

Another direction involves the use of physically based
processes to generate dendritic structures [1]. These pro-
cesses range from fluid flow models to the aggregation
of dust particles, and have shown some promise. Sev-
eral of these techniques have been used in combination
with the simulation of natural processes to model natu-
ral structures [12], such as the complex formation of ice
crystals [10], the growth of lichen [7], and for animating
lightning [11]. While at times compelling, these meth-
ods tend to suffer from a lack of control. Furthermore,
they do not tend to be very flexible, and it is difficult to
use them to model objects aside from the ones for which
they were specifically designed.

A classic method for procedurally generating den-
dritic structures is diffusion-limited aggregation (DLA),
which simulates the progress of dust particles floating
through the air [35,2,3]. Particles are released a long
distance from the structure and allowed to perform a
random walk until they reach the structure, where they
attach themselves to it. Output from this method re-
sembles branching structures one might expect to see in

the real world. However, DLA is costly to compute and
difficult to control.

Path planning is the process of finding a least cost
traversal through a weighted graph [34]. It is often seen
in the contexts of artificial intelligence and computa-
tional geometry [8]. By originating all the paths from
a single seed point in the graph and finding paths to an
arbitrary array of endpoints, we are able to obtain a den-
dritic structure. The result is also fast to compute, and
more importantly, offers powerful control mechanisms in
the forms of the edge costs and the placement of the
endpoints.

The distance metric that we use for generating our
dendritic structures was first introduced by Pai and Reis-
sell [19] as a means of improving path planning for robots.
Their non-scalar distance metric attempts to model the
roughness of terrain, under the premise that robots are
safer by avoiding peak edge costs, even if it means taking
an alternate route with a higher total cost. This results
in longer, more winding paths. As we discuss later, this
property makes the non-scalar paths better suited for
creating artistic effects than those generated by the con-
ventional cumulative distance metric.

2.2 Dendritic Stylization

We demonstrate the effectiveness of our method for mod-
eling dendritic structures by applying it to the task of
dendritic stylization, where the growth of a dendrite is
guided by an image. There is considerable precedent in
using images to guide the growth of various unusual
yet artistic structures. Mould used an input image to
guide the evolution of crack patterns [16]. Pedersen and
Singh [20] and Xu and Kaplan [37] shape labyrinthine
structures around a source image. Our approach uses a
different method for growing the structure, but we share
the goal of representing an arbitrary input image using
an unusual set of primitives.

The results of our dendritic stylization are similar
in some aspects to artistic halftoning, where the place-
ment of artistic primitives such as stipples [27], brush
strokes [28], or pen and ink [26] is intended to convey
the input image. We can consider the paths generated
by our algorithm as our primitives.

The primary goal of artistic halftoning is to achieve
a compelling balance between reproducing the artistic
style in question and preserving salient features in the
input image. Preserving features such as gradient edges
has traditionally proven difficult. Some methods circum-
vent this complication by allowing users to highlight im-
portant features in the input [26]. Streit and Buchanan
proposed the notion of a generalized importance map
that could be used to place primitives procedurally where
they are most needed to convey the essence of the in-
put image [29]. This concept can easily be customized
for our stylization approach in order to accurately cap-
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ture important image features, including gradient edges,
without user interaction.

This is not the first time that path planning has been
used to search for gradient edges. Mortensen and Barrett
employed path planning to locate features in an image
using edge boundaries [15]. Although this is similar to
our method, the cumulative distance metric employed in
their approach tends to take short cuts over high cost
areas in order to decrease the total length of the path,
making it more difficult to preserve features that may
be important for artistic effects. The non-scalar distance
metric does not suffer from this weakness.

2.3 Image-Guided Tree Modeling

The procedural generation of trees has been addressed
several times by computer graphics researchers. Most
of the approaches that have been taken are intended
to model photorealistic trees. Our method for model-
ing dendritic structures shows promise for growing non-
photorealistic trees. One of our main interests is in cre-
ating pareidolia effects, where images (usually faces) are
seen within a natural structure such as a tree. The frame-
work that we have developed seems effective at creating
these sorts of effects.

Several forms of L-Systems have been used to create
visually realistic models of plants, including trees [36,23,
24,21]. More recent work in this area tends to focus on
simulating the interaction between the plants and their
environment in order to use information from these nat-
ural processes during the growth of the plants, and their
placement in a scene [21].

Some graphics researchers have been interested in
conveying the appearance of trees without worrying about
the natural processes that form them. A few of these ap-
proaches have created tree models based on geometric
considerations [33] or particle systems [25]. These meth-
ods can produce results that resemble real trees reason-
ably well, at the expense of control and flexibility. Be-
cause these methods are designed to model individual
types of trees, they require almost completely new sets
of instructions in order to create different types of trees
or even irregular characteristics within the same type of
tree. This lack of control makes these methods unsuitable
for containing hidden images.

There has also been some interest in guiding the con-
struction of three dimensional tree models using input
images [18,30]. The resulting models can be quite faith-
ful to the input image. However, these methods are un-
able to model trees that do not appear in photographs,
limiting their flexibility. These methods cannot easily be
applied to the task of creating a tree from any arbitrary
input image or even from scratch.

Our approach is not intended to model the natural
processes involved with vegetal growth, nor is it expected
to create photorealistic results. We are more interested

in achieving the sorts of artistic effects that can be seen
in landscape painting, where highly stylized trees and
vegetation are often present.

3 Modeling Dendritic Structures with Path
Planning

Modeling dendritic structures for artistic effects requires
first and foremost precise control over the evolving struc-
ture. There need to be mechanisms in place to guide how
the dendrites grow so that the intended artistic effect is
not compromised. In an illuminated manuscript, for ex-
ample, the decorative vines should not obscure any of
the text. Furthermore, the control handles need to be re-
sponsive enough that satisfactory results can arise from
minimal input, such as information inferred from an in-
put image.

The second criterion for producing artistic effects is
the flexibility of the approach. Different dendritic struc-
tures tend to display different characteristics, as can be
seen when comparing crack patterns with tree branches,
for example. With this in mind, we are looking for com-
pelling results that are flexible enough to encompass a
wide range of dendritic structures through only small
changes to the modeling process.

Existing procedural methods for modeling dendritic
structures fail in providing sufficient control and flexibil-
ity. We demonstrate in the next section that our path
planning algorithm does not suffer from these deficien-
cies, and can be computed quickly.

3.1 Path Planning Algorithm

Path planning [34] is the problem of finding the least-
cost path between two nodes in a weighted graph. We can
create a dendrite – a branching structure without loops –
by computing paths from a single seed point to multiple
endpoints distributed through the graph. Our graphs are
regular eight-connected lattices in this paper, though it
should be noted that this algorithm can be performed
on graphs with arbitrary connectivity. An example of a
dendrite is shown on the left of figure 1.

Dijkstra’s algorithm [34] computes shortest distances
from a seed point to the other nodes in the graph. Each
node N has an upper bound distance to the seed, written
E(N), and an actual distance, written A(N). Dijkstra’s
algorithm uses a priority queue to store a set of “frontier”
nodes: nodes with unknown actual distance, but which
lie adjacent to nodes with known actual distances. The
priority queue is ordered by increasing upper bound dis-
tance, with smallest distances at the top; it is often im-
plemented as a heap. Initially, the frontier contains only
the seed node, at upper bound distance zero; the graph
is initialized with all nodes’ upper bound distances set
to infinity. Then, the following is repeatedly performed.
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Fig. 1 Modeling a dendritic structure using path planning
with the cumulative distance metric (left) and a dendrite
modeled using the partial non-scalar distance metric with an
identical graph and set of endpoints (right).

First, the top node, say T , is removed from the frontier,
and its actual distance set to its upper bound distance.
Second, for each node Ni adjacent to T , a new upper
bound is computed Enew(Ni) as A(T ) plus the cost of
the edge linking Ni and T ; those nodes whose old upper
bounds exceeds Enew have their upper bound replaced by
the new upper bound and are added to the frontier. Di-
jkstra’s algorithm terminates when the frontier is empty,
at which point all nodes in the graph have known dis-
tance values.

To find the distances to n nodes, Dijkstra’s algorithm
makes O(n) removal operations. Maintaining the heap
has a cost of O(log m) per interaction, where m is the
number of nodes in the frontier; thus, the overall cost
is O(n log m). Typically, m << n; that is, only a small
fraction of the graph is in the heap at any one time.

Once Dijkstra’s algorithm has finished, we can turn
to generating the paths. The path planning approach
traces backwards from each endpoint towards the single
seed point of the structure. We can accelerate this cal-
culation by calculating the paths only until we reach a
part of the structure, at which point we already know the
shortest cost path back to the seed point since we calcu-
lated it when pathing back from a previous endpoint.

Path planning offers favorable control characteristics.
We can achieve local control over the paths by manip-
ulating the edge weights, while choosing the endpoints
gives us global control. Thus, we can control both where
the branches go and how they get there, and we can
generate them quickly without requiring any human in-
tervention.

3.2 The Non-Scalar Distance Metric

While path planning offers good control for artistic ef-
fects, the cumulative distance metric that is traditionally
used to determine the shortest path has some adverse
consequences for our applications, as shown in figure 2.
In particular, the paths generated using the traditional

distance metric will tend to take short cuts over high cost
areas in order to avoid long, winding routes. Not only is
this bad from a control standpoint, as such short cuts
can ruin details that are important for artistic effects,
but we also believe that such winding paths more closely
resemble ornamental dendrites traditionally used, such
as in illumination.

Fig. 2 A dendritic version of Lena (from figure 3) using the
cumulative distance metric (left) and the partial non-scalar
distance metric (right).

We can obtain long and winding paths using a non-
scalar distance metric first introduced in the field of
robotics [19]. This non-scalar metric can be implemented
by storing the list of edges traversed along a prospective
path in the order of decreasing cost. When two prospec-
tive paths are being compared, corresponding elements
from the beginning of each list of edges are selected for
comparison. As soon as one edge value differs from the
other, the path with the smaller value is determined to
be the shorter of the two. Otherwise, we move on to com-
pare the next element of each list. In essence, this metric
can be seen as minimizing the maximum edge cost in the
path.

Sorting the edges on a path adds some computational
overhead, but the main drawback is the memory require-
ment. Memory tends to be at a premium during path
planning algorithms, and this is no exception. Storing
a list of edge costs needed for each potential path is a
fairly prohibitive cost. Fortunately, we can achieve re-
sults similar to the full non-scalar distance metric using
only a partial version.

The partial non-scalar distance metric implemented
in this paper keeps track only of the maximum edge
cost along the path. Comparisons between paths are first
made by comparing these two maximal cost values. In
the case of a tie, we then rely on the cumulative distance
metric to determine the shorter path. This is shown in
the pseudocode of figure 4. Figure 1 demonstrates that
even this reduced version of the non-scalar distance met-
ric produces markedly different results from the cumu-
lative distance metric. Using the partial non-scalar dis-
tance metric instead of the traditional cumulative dis-
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Fig. 3 Input images (from top left) Lena, Eric, a cat, a manor, pottery, a sailboat, some statues and a mandrill.

tance metric has no impact on the complexity of the
algorithm.

partialNonscalarCompare(Path p1, Path p2): Path
{
if (p1.maxEdgeCost == p2.maxEdgeCost)
{
return the path with the lower cumulative distance

}
else
{
return the path with the lower maximum edge cost

}
}

Fig. 4 Pseudocode for the comparison of two paths using
the partial non-scalar distance metric.

3.3 Controlling the Dendritic Growth

Controlling the growth of the dendritic structure is of
great importance. As mentioned previously, we believe
that path planning offers responsive control handles. In
particular, we wish to be able to control the evolving
structure using an input image. Though our technique
can be used on arbitrary graphs, including meshes, artis-
tic effects are commonly applied as image filters. Here,
we propose to transform an input image into a dendritic
version that can simulate some artistic style.

Local control over the evolving dendritic structure
can be obtained by setting the edge costs according to
some parameters drawn from the same location in the

input image. In most cases, a combination of the gra-
dient and intensity values is helpful for preserving the
structure of the image, though the exact combination is
dependent on the effect being sought. The endpoints will
determine the large-scale structure of the dendrite, and
should be carefully chosen.

Figure 2 shows an input image and dendritic struc-
tures created using the conventional cumulative distance
metric and the partial non-scalar distance metric pro-
posed in this paper. The cumulative distance metric tends
to discourage longer branches, leading to cases where the
branches take short cuts over high cost areas. Meanwhile,
the partial non-scalar distance metric tends to lead to
longer branches that are better able to fill space and
more willing to wind around high cost areas instead of
cutting through them.

4 Dendritic Stylization

In this section, we apply our framework to the task of
dendritic stylization. Although our process is similar to
artistic halftoning in some respects, we do not seek to
match the tones in an image. Instead, our dendrites are
able to create compelling results by emphasizing inten-
sity edges and contrasts that are present in the input
image.

Our dendritic stylization process contains several steps.
First, we construct an importance map using the gradi-
ent magnitude and intensity from the input image. Next,
this importance map is used to select edge weights for
our graph and to assist in the placement of endpoints.
This fulfills all the preconditions for our path planning
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algorithm, and we employ it to create the dendritic struc-
ture. Finally, we add importance emphasis to the result-
ing structure. Once these modeling steps are complete,
the resulting structure can be rendered using many dif-
ferent dendritic metaphors.

4.1 The Importance Map

Several procedural halftoning approaches use the notion
of an importance map to distribute strokes or primitives
throughout the input image [29]. We use a similar ap-
proach for our dendritic stylization. We build each pixel
of our importance map as a combination of the intensity
and the gradient magnitude at the corresponding pixel
in the input image.

Areas of the image with a higher importance will be
more likely to be visited by the dendritic structure. In
order to preserve color contrasts, we ascribe high impor-
tance to dark pixels in the input image. We can preserve
intensity edges in the input image by giving high impor-
tance to areas of high gradient magnitude. In the results
we show, we weighted the importance contribution from
gradient magnitude three times as heavily as that from
intensity.

The importance map provides us with weights for
the lattice nodes. The weights in the lattice also in-
clude a small constant and a random contribution. The
dendritic stylization examples shown in this paper use
very small random contributions, which suffice to provide
variation without damaging the structure of the image.
Edge weights are derived from node weights: the weight
of an edge is the average of the weights of the nodes it
connects.

We already have enough information to determine
that our non-scalar metric responds more appropriately
to the control handles inherent in the path planning ap-
proach. The weight formulation above was used in our
implementation of Dijkstra’s algorithm to produce the
visualization shown in figure 5. The lighter areas repre-
sent nodes that are visited earlier in the algorithm, and
can be reached at a lower cost. It is easy to see that the
cumulative distance metric is ruled by proximity to the
seed point, at the expense of the image structure. On
the other hand, the partial non-scalar distance metric is
willing to take long, winding paths to reach its destina-
tion without crossing high cost areas. This allows it to
better preserve the features in the input image.

Feature preservation is further demonstrated by the
dendrites themselves. Figure 2 shows an input image
and dendritic structures created using the conventional
cumulative distance metric and our partial non-scalar
distance metric. Because the partial non-scalar distance
metric does not penalize long paths, its paths are better
able to follow features in the image. As a result, the struc-
ture of the image is better captured by our approach.

Fig. 5 Source image (left) and contours from Dijkstra’s al-
gorithm using the cumulative distance metric (center) and
the non-scalar distance metric (right).

4.2 Endpoint Placement

Large-scale control over the evolving dendritic structure
can be established by carefully selecting endpoints from
the input image. We want to select points so that the re-
sulting dendrite can convey the image; a heuristic for
placing the endpoints puts more endpoints in regions
of higher interest (guaranteeing that paths pass into or
through that region) and places well-spaced endpoints
(so that we obtain a distinct path for each endpoint).

Both of these characteristics are also sought for computer-
created stipple drawings. Accordingly, we used a recent
stippling method for selecting our endpoints [17]. We use
our importance map to help us choose the endpoints dur-
ing this algorithm.

The result of this approach is a set of endpoints that
can be used for stippling [27,17], assuming the chosen
threshold is low enough. An example of the endpoints
chosen is shown in figure 6. As can be seen, the dendrite
produced from these endpoints does a reasonable job of
capturing the essence of the input image.

Fig. 6 Source image (left), the set of endpoints (center) and
the resulting dendritic structure (right).

4.3 Importance Emphasis

To enhance the effect of our dendritic stylization, we
also wish to emphasize certain parts of the image based
on their gradient and intensity values. Most procedural
artistic halftoning approaches apply some small changes
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to their primitives in order to accomplish this, ranging
from angling strokes to increasing the size of stipples.
Our primitive is a dendritic path, which naturally lends
itself to changes in width based on the importance of a
region. In this way, we can have thicker branches passing
along more critical sections in the input image.

We compute a thickness for each node in the struc-
ture using a rolling average of importance along each
branch. By taking into account the values of several
neighbors on both sides, we are able to achieve a smoother
transition between the thickness levels. By allowing this
window to overshoot the end of the branches, natural
thinning of the dendrites occurs near their tips.

Fig. 7 Source image (left) and a dendritic version (center)
and a dendritic version with importance emphasis (right).

Figure 7 shows the results of adding importance em-
phasis to our dendritic structure. The varying widths of
the branches provide visual cues of the structure, high-
lighting the object’s silhouette, in this example. The thick-
ness values can be stored along with information about
the dendritic structure for further rendering purposes.

4.4 Stylization Results and Evaluation

Figure 8 shows the results of applying our dendritic styl-
ization process, to the input images shown in figure 3.
Our method is effective on a variety of images, able to
convey the structure of a human face, as in the Lena
and Eric images, or to depict even subtle features, such
as the shape of the cat’s body (weakly contrasted in the
original image).

Similarly, we note that our dendrites will emphasize
features that are barely discernible in the input image.
Some of these fine details include the cloth folds in the
image of Eric in figure 8, or the fabric of the sail. This is
because the partial non-scalar distance metric can coerce
the paths to avoid locally expensive edges, forcing them
to take longer routes along even weak intensity edges.
This allows us to easily capture small details, assuming
there are not more important features in the area to
attract the paths.

Based on the results generated for this paper, we can
make several observations insofar as how well different
types of images will weather the dendrification process.

In general, our process works best when there is high
contrast between different areas of the image. It also suc-
ceeds in capturing high frequency detail, as seen with the
fur in the mandrill image in figure 8 and the feathers on
Lena’s hat. It does not perform quite as well in clearly
representing smooth intensity gradients, or at conveying
absolute intensity, as demonstrated in the sky above the
sailboat in figure 8. We do not consider this to be a sig-
nificant drawback, as strict tone matching was not one
of our priorities.

Table 1 shows the time our method took to generate
some of the results presented in this paper. The number
of seconds required to perform our dendritic stylization
is largely dependent on the threshold used for selecting
endpoints. For the sake of brevity, we show only a subset
of our timing results, as all the images tended to fall
within the time range of those listed.

4.5 Dendritic Metaphors

We briefly consider different dendritic metaphors that
can be achieved through relatively small changes to our
modeling process. The left image of figure 9 shows that
we can express our dendritic structures as stylized vines
that you might find in some forms of ornamentation by
smoothing the branches and changing the rendering pro-
cedure. The right image of figure 9 shows that putting
more weight on upwards and sideways edges can encour-
age the branches to grow downwards like some form of
stylized lightning. We believe that most of the challenge
in expanding our set of dendritic metaphors would lie in
creating compelling renderings of the results.

Fig. 9 A dendritic structure using a stylized vine metaphor
(left) and dendrites rendered using a lightning metaphor
(right).

5 Image-Guided Tree Modeling

The preceding section shows that our modeling frame-
work can easily be modified to create different sorts of
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Fig. 8 Dendritic stylization (from top left) Lena, Eric, a cat, a manor, pottery, a sailboat, some statues and a mandrill.

Image Endpoints Timing (in secs)
Lena (Figure 8) 3838 530

Pottery (Figure 8) 2992 368
Sail Boat (Figure 8) 3554 546

Cat (Figure 8) 2019 237
Mandrill (Figure 8) 2715 446

Table 1 Timing Analysis
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branching objects. Our approach is flexible enough to
model more advanced structures, such as trees. This next
section describes the changes that need to be made to our
modeling framework in order to model non-photorealistic
trees.

5.1 Growing Trees

Different kinds of trees have different kinds of branches.
We are not at this point attempting to model all pos-
sible types of branches, but to generate plausible non-
photorealistic trees. Figure 10 shows an example of the
kind of painted trees that we are attempting to stylize
and model.

Fig. 10 A painted oak tree.

We can observe that the tree in Figure 10 has two
classes of structures: the trunk and primary branches
tend to be more straight and regular, while the extrem-
ities are more gnarled. The former are more consistent
with the paths generated using the cumulative distance
metric, while the latter display properties more in tune
with our partial non-scalar distance metric. We can ac-
commodate both by combining the two metrics into a
weighted function and changing the contribution of each
metric depending on what type of branch we wish to
generate. This requires us to transform the result from
the partial non-scalar distance metric into a scalar value,
which we can accomplish by taking a weighted sum of
the maximum edge cost along the path and the total
cost of the path itself. We have found that weighting the
maximum edge cost a thousand times more heavily than
the total cost of the path tends to produce compelling
results.

We use an iterative approach to grow our trees, as
shown in figure 11. The first iteration uses the cumula-
tive distance metric, and the seed point is placed at the
bottom of the graph. The seed is shown in green in the
first image of figure 11. We then generate a sparse dis-
tribution of endpoints in order to grow the trunk and
the primary branches. In the case shown in figure 11,

Fig. 11 The growth of one of our dendritic trees over two
iterations. The first two images show the first iteration and
the second pair show the second iteration.

we use only a single endpoint for the trunk. This point
has been placed almost directly above the seed. Once the
endpoints have been placed, we perform our path plan-
ning algorithm using the cumulative distance metric to
obtain the results shown in the second image of figure 11.

Subsequent iterations use the entire existing struc-
ture as the seed. This is shown in the third image of fig-
ure 11. We confine a larger distribution of endpoints to a
region surrounding the already generated structure. We
can find the distance from every prospective endpoint to
the structure by running the brushfire algorithm again
using every point in the structure as a seed. We can then
choose endpoints within the radius using rejection sam-
pling. After each iteration, we reduce the radius, so that
later iterations will generate shorter branches. Once we
have picked all the endpoints, we can use our path plan-
ning approach to generate the branches. We can change
the contribution from each distance metric between it-
erations of this algorithm in order to control the charac-
teristics of the branches. The fourth image of figure 11
shows the result of the algorithm after the first two iter-
ations.

Fig. 12 A dendritic tree structure built using two iterations
of our algorithm (left) and one built with three iterations
(right).

A tree generated in this fashion is shown in figure 12.
The branches were rendered using the same splines that
were used in our vegetal stylization. Our structures re-
semble the desolate trees that sometimes appear in land-
scape paintings, reminiscent of the proverbial ‘haunted’
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tree. We can see that the cumulative distance metric en-
sures that the trunk of this tree is fairly regular, while
the subsidiary branches are more twisted due to the in-
creased contribution of the partial non-scalar distance
metric.

Once we have established the general structure of our
trees, we can consider adding further details. One impor-
tant factor for making the structure of trees more evident
is the way the thickness of the branches vary. We can
achieve this effect by increasing the thickness of the en-
tire structure after each iteration of the algorithm. This
means that the trunk and primary branches will remain
the thickest, while the periphery will be made up of thin
branches.

The right image of figure 12 shows the results of a
dendritic tree modeled with iterative branch thickening.
There are three thickness levels present in this image.
The thickness is highest at the trunk, and decreases for
each set of sub-branches.

The representation of trees that we have generated
thus far works well in some cases, but our two-dimensional
approach does not take self-occlusion into account. Real
trees, and drawings of trees, inevitably display self-occlusion.
We can imitate occlusion by applying our algorithm sev-
eral times to the same trunk structure with different
noise maps, then stacking the resulting images on top
of one another. This gives the results shown in figure 13.

Fig. 13 By stacking together two dendritic trees (left and
center), we are able to create a more detailed tree that in-
cludes occlusion (right).

5.2 Image-Guided Tree Modeling

Pareidolia can be defined as an effect where a natural
structure conveys the illusion of a particular image. This
effect has been observed in many sorts of natural phe-
nomena, including clouds, rocks, and trees. A classic ex-
ample, shown in the left image of figure 14 is the struc-
ture on the surface of Mars that resembles a human face.
The right image of figure 14 shows that trees and vege-
tation can sometimes also create pareidolia. In this case,
the bent trunk of the tree resembles a bowing person.
Humans are adept at recognizing human faces and fig-
ures, making them the most common illusion.

Fig. 14 A section of the Mars landscape that resembles a
human face (left) and a tree that resembles a bowing person
(right).

Artists have shown some interest in creating parei-
dolia effects within their work. There is also a precedent
for using dendritic structures to convey these hidden im-
ages. Tree branches have been used by Salvador Dali to
form pareidolia [5], and they have also been employed in
more recent work such as the poster for the 2007 film
Premonition [22].

These sorts of images require considerable artistic
skill to create artificially, as representing the image with-
out compromising the plausibility of the tree branches
used to form it is a daunting task. There has been little
research into the possibility of procedurally generating
pareidolia, although there is precedent for using input
images to guide the modeling of various natural struc-
tures [16]. Our framework gives us the control handles
we need to work on this problem.

In this case, we will use our principles of dendritic
stylization in order to plant hidden images within our
tree structures. At the same time, we want our trees to
maintain a plausible appearance. This is a difficult line
to walk.

We continue to build our dendritic trees over several
iterations, as described above. In order to maintain the
appearance of a tree, we elect to embed only a certain
portion of the image into our tree structure, and allow
the rest to be generated primarily in a random manner.
The results of this process are shown in figure 15, where
Lena’s face is embedded within the branches of the tree.

We begin generating image-guided trees in the man-
ner described in section 5.1. We employ a lattice with
edge weights drawn from a uniform random distribution
to generate the tree trunk during the first iteration of
our algorithm. A new lattice is built for subsequent iter-
ations of the algorithm using the gradient magnitude and
intensity from an input image to set the edge weights,
as described with regard to our dendritic stylization pro-
cess. We increase the random contribution to the edge
weights towards the left side of the image. As a result, the
paths will be more inclined to follow the image structure
on the right side of the image than the left.

We choose the endpoints during subsequent iterations
using the method that we employed for dendritic styliza-
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Fig. 15 A dendritic tree with Lena’s image embedded within
its branches (left) and the same tree with importance thick-
ness (right).

tion with two notable modifications. The first difference
is that we allow the endpoint selection algorithm to treat
every point on the structure as a seed point. The other
modification is that we keep track of the number of edges
needed to reach each node. This allows us to ensure that
branches end within an arbitrary radius of the struc-
ture. Endpoints that fall outside the chosen radius are
still considered seeds during the endpoint selection algo-
rithm, but they are not treated as endpoints when we
generate our paths.

In the examples we show in this paper, we decided
that only endpoints on the right side of the structure
could be chosen in this manner. We then chose approxi-
mately half as many endpoints from the left side of the
graph, and their coordinates were determined by random
rejection sampling. We then introduced a few random
endpoints into the right side of the image in order to
add some variation to the tree.

Artistic hidden images also use different features within
the trees to convey the shape of the image, including the
thickness of branches or the foliage. This is demonstrated
in the Premonition poster [22]. We would also like to take
advantage of this within our implementation. The right
image of figure 15 shows an example where the thick-
ness of the branches is based on their importance in the
source image, as was done for dendritic stylization. This
approach does a good job of highlighting the image, but
it detracts from the plausibility of the tree.

An alternate approach to thickness is to base it on
the distance from the trunk of the tree. We refer to the
results given by this metric as branch thickness, which is
shown in the second image of figure 16. This approach is
better at preserving the appearance of a tree, although
the hidden image is compromised in the process.

5.3 Tree Rendering

With this modeling process in place, we now turn to
the rendering of our image-guided trees. We decided to

Fig. 16 A dendritic tree containing the image of Eric in its
branches with importance thickness (left) and the same tree
using branch thickness (right).

use image analogies [9] to get a reasonable painterly ren-
dering from our tree models. The results from applying
image analogies are shown in figure 17.

Fig. 17 Trees containing the images of Lena (left) and Eric
(right) in a painterly style provided by image analogies.

5.4 Results and Evaluation

Figure 18 shows one of the trees that we generated com-
posited into a painted image. We chose a winter land-
scape painting by American impressionist John Twacht-
man, since we thought it fit with the skeletal appearance
of our tree. We decided to place our tree far in the back-
ground so that a viewer would not immediately be able
to discern that the style of our painted tree is different
from the style of the landscape. As shown here, our tree
does not look out of place in this background. In fact,
some viewers even assumed that this image was showing
a real world example of pareidolia.

We use a landscape painting by American portrait
painter John Neagle as the background in figure 19. We
then composited a tree shaped to resemble Eric’s face
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Fig. 18 A painted landscape by John Twachtman with one
of our trees composited into the background.

Fig. 19 A painted landscape by John Neagle with one of our
trees composited into the background.

(from figure 17) into this backdrop. Once again, we have
reduced the scale of our tree in order to diminish the
differences in painting style between our tree and the
landscape.

In general, we have found that our algorithm pro-
duces the most compelling results when portraits are
used as the input images. The human visual system is
adept at detecting human features, and as a result they
make a good basis for pareidolia illusions. We also find
that our algorithm functions well when the trunk of the
tree can be centered near the most prominent features
of the input image. In the results we showed, we place
the trunk near the image center; most images and pho-
tographs are centred around the subject. Finding salient
features in an image remains an open problem.

6 Conclusion and Future Work

The main contribution of this paper is the introduction
of our procedural method for modeling dendritic struc-
tures. Our method uses path planning to achieve supe-
rior control and flexibility, and thus avoids the weak-
nesses exhibited by previous procedural methods. The
control characteristics of our approach are further en-
hanced by the partial non-scalar distance metric that we
use, which encourages the branches to obey the control
handles more rigorously, and are conducive to creating
compelling artistic effects. The effectiveness of our ap-
proach was demonstrated when we applied it to dendritic
stylization and image-guided tree modeling.

One avenue for future work would be to look into
a wider variety of non-photorealistic metaphors for our
dendritic structures. We have already done some work
on likening artistic dendrites to trees and vines, but we
believe that our dendrites could be used to model light-
ning, frost and other branching structures with only mi-
nor changes to the modeling process, demonstrating the
versatility of our approach. This was suggested briefly
in figure 9. We believe that the main challenge in this
regard would be to render the dendritic structures in a
manner appropriate to their metaphor.

We also believe that more research could be done
with regards to hidden images. Our approach is only
intended to deal with the case where the image is be-
ing represented within a cluster of tree branches. Artists
have hidden images in many other sorts of stylized ob-
jects, ranging from the shadows of landscapes to the
shapes of clouds. Planting images within these features
remains a difficult problem, and dealing with some of
these cases might require a completely different approach
from the one we used in this paper.

Another area of interest would be in improving the
thickness measures we have used for our image-guided
trees. We believe that a better balance between impor-
tance and branch thickness would allow us to better pre-
serve the features of the input image while maintaining
some of the branch structure one would expect in a tree.
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