
Distributed 3D Rendering System in a Multi-agent Platform

Risto Rangel-Kuoppa
1,2

Carlos Avilés-Cruz
1

David Mould
2

1
Departamento de Electrónica C. B. I.

Universidad Autónoma Metropolitana-Azcapotzalco

Av. San Pablo No. 180, Col. Reynosa, C. P. 02200,

México D. F.

2
 Department of Computer Science

University of Saskatchewan

57 Campus Drive, Saskatoon

Saskatchewan, Canada

rir785@mail.usask.ca caviles@correo.azc.uam.mx mould@cs.usask.ca

Abstract

In this work, we propose a 3D rendering system that

distributes rendering tasks across a multi-agent platform.

The new approach is based on a multi-agent platform,

where the goal is to create a virtual 3D environment. The

main task is the rendering of individual objects. Each 3D

object must be rendered in a remote unit; the resulting

rendering is sent through the network to a 3D

visualization process which generates the visualization of

the whole 3D environment. The object movement and

remote communication requirements have been

implemented using a multi-agent system platform. The

distributed system is implemented in Windows O.S., using

DirectX graphical libraries and JAVA programming. The

multi-agent platform used is JADE. The computer

connection is a LAN at 100 MBS in a star topology.

1. Introduction

The work in this paper is motivated by our effort to

build a distributed 3D rendering system that uses a set of

personal computers to provide real-time rendering

performance. Rendering 3D objects on a single PC

presents no problem [4,8,9,10,11,12,14,15]; additionally

existing protocols can be used to establish a network

[16,17]. It remains to show how the computers

communicate in order to share the rendered objects and

generate a single 3D visualization of the distributed

environment.

The general idea, having relaxed the constraints

involved, is that distributed computing has proven to be a

good approach to solve problems by decreasing the time

of execution when executing parallel tasks: several

computing resources can be used instead of one single

powerful computing resource. In this work, we employ

this approach to get a system for rendering virtual

environments while avoiding the bottleneck of a

centralized rendering process. The resulting system is able

to support in terms of visualization performance more

complex distributed virtual worlds than would a system

with a centralized rendering process. Also, the approach

we will describe makes use of a multi-agent

architecture[1,2,3,21,23] for the distributed computing

requirements.

The remainder of the paper is organized as follows. In

section 2 we discuss the problem formulation; in section 3

we describe a possible solution; in section 4 we give

details of our approach; we present our evaluation in

section 5; and finally, we show results and conclusions in

sections 6 and 7 respectively.

2. Problem formulation

Computing systems that are used to make 3D

visualizations often have the architecture shown in Fig. 1.

These architectures may or may not have distributed

computing processes for the behavior of the objects in the

virtual environment, especially if it is a dynamic

environment, but the 3D visualization is centralized.

Centralizing the 3D processing creates a bottleneck

that restricts the complexity of the 3D environment. Since

computing power has increased not only in standard

processing capabilities but also in graphics processing,

using this graphics processing power in a distributed way

is a natural consequence of distributed computing. We

want to make use of distributed processing units to obtain

a 3D visualization as shown in Fig. 2.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 1 - Typical architecture of a 3D visualization

system. The 3D environment information is computed

either by a distributed or a centralized Environment

Processing component and passed to a centralized 3D

processing component in order to generate the 3D

visualization.

Figure 2 - Schema of the architecture which uses

distributed rendering units to create a 3D visualization.

In particular, the problem is to create a virtual 3D

environment in which there exist 3D objects associated

with remote entities. Each of these 3D objects must be

rendered in a remote graphical unit. The rendered objects

will be sent through the network to a 3D visualization

process which will compile the remote rendered images of

all the objects into a visualization of the whole 3D

environment. The problem is inspired by the idea of

having distributed systems that support much more

complex virtual environments by using distributed

rendering capabilities than those using centralized

rendering. We can therefore obtain the capability of

supporting more complex environments with the same

infrastructure. Applications of this work would be any

architecture for distributed environments with a graphical

visualization, such as video games, CAVEs, distributed

virtual environments, etc.

The object movement and remote communication

requirements have been implemented using a multi-agent

system platform. We use a multi-agent platform in order

to reduce the development time by using a tested tool. So,

the remote entities with which the 3D objects are

associated are remote agents in the multi-agent system

3. Overview of technology

This section has been split into two parts: the first

describes technical considerations, while the second one

describes the logical solutions, i.e., the algorithms used

and the reasons why.

3.1 Technical considerations

The following considerations were taken into account

in developing the project:

Operating system - Two main options were

available; Windows based or Linux. No other

operating system was considered since these two

are the most popular. We chose Windows since

there are more 3D API’s available and these

make real use of the graphic acceleration

hardware in the computers, unlike Linux API’s

that often do not use all the hardware acceleration

capabilities.

3D API – Two main options were considered;

DirectX or OpenGL. Since it is not clear which

of DirectX[19] or OpenGL[20] has better

performance, the decision was based on the

authors preferences which is for DirectX.

Development Language – For purposes of timely

development the chosen language is Java, with

NetBeans’ IDE.

Multi-Agent platform – The options were: Zeus,

ADK and JADE [18], from which JADE was

chosen due to the wealth of documentation and

on-line resources available.

3.2 Logical solutions

There is no difficulty in rendering 3D objects in

different computers; but we have many options in

deciding how the computers communicate in order to

share the rendered objects and generate a single 3D

visualization of the distributed environment.

The first approach that we considered follows a

request policy. This means that for generating each frame

of the 3D visualization, all the remote agents are requested

to send the rendered image of their associated 3D object.

To generate the rendered image of the 3D object each

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

agent must know the state of the object. This state (speed,

position, orientation) is sent to the agent so it can re-orient

the 3D object as needed and render it correctly according

to its current state in the environment. This approach is

shown in Fig. 3.

Figure 3 - First approach: to generate each frame of the

3D visualization each agent is requested to send its

rendered object, and the request is done by updating

the object state in the environment.

It is important to recognize that the multi-agent

platform not only includes agents that make the remote

rendering, but also one specialized agent, the visualization

agent, whose main task is management of the 3D

environment (objects’ movement, collisions, etc.) and the

rendering of the 3D visualization, i.e., the final view.

Preliminary tests suggested that this approach would

have worse performance than the one finally implemented.

The performance measured in the preliminary tests was

such that the frame rate would be less than 10 frames per

second (fps) with the server agent and one client agent

running in the same computer

4. Description of our approach

Instead of a request-answer policy, our approach uses

polling. Each remote agent is associated with a buffer in

which the rendered image is stored; the agent that

generates the 3D visualization takes the information from

the buffer. This approach has better performance than the

one explained in section 3.2, but it has the disadvantage

that, depending on the speed of transferring the object

from the remote agent to the visualization agent, there will

be a difference between the logical state of the object in

the environment and the visualized state. This approach is

shown in Fig. 4.

Figure 4 - Implemented approach: updates to the state

of the object and update to the buffer are made

asynchronously.

It is also important to understand that in this approach,

updating the state of the object in the environment is done

asynchronously with delivering the rendered objects.

Now that the main functionality of the implemented

approach has been exposed, an important feature will be

explained in detail. Synchronization in distributed

environments is a very important issue because it allows

having the state of the environment shared among its

distributed components. In this work, synchronization is

not only present when communicating the state of the

object in the environment, but also when the graphical

information is ready to be communicated. In Fig. 5 we

can see the problems that may arise when synchronization

is not available at the moment of sharing graphical

information.

Figure 5 – Synchronization problem: If the image is

sent when the frame has not been completely

rendered, then visual distortion, due to object’s

movements in the environment, may occur.

Another problem of visual synchronization is called

flickering, where the image at the display seems to flicker.

The usual source of flicker is that the information

displayed is being erased and rewritten several times per

second. This problem is usually solved by using the back

buffer rendering technique[22] and since this is

automatically implemented in Java3D there was no related

implementation in the project. In Fig. 6 we can see the

points at which synchronization has been implemented in

this paper.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 6 - Synchronization points of the project; A-

Remote Rendering, B-Buffers Access, C-Remote state

update, D-Environment state update.

The synchronization points are as follows:

A. Remote rendering synchronization. A rendered

object will be sent to the visualization agent only

when the object is fully rendered.

B. Buffer access synchronizations. Access/read to

the buffers from the visualization agent is done

prior and only once per frame of the 3D

visualization and only when the buffers have a

full rendered object on them. I.e., the

visualization agent reads from the buffers once

per frame, and is permitted to read only when the

buffer contains a completely rendered object.

The remote agents can write to the buffer only

when the visualization agent is finished reading.

C & D. State update synchronizations. Remote state

updates are done once per step; updates are sent

to all remote agents. A step is an advance in

virtual time by a small increment and the

calculation of the new states of all objects in the

environment in accordance to their positions,

orientations, speed, and interactions with other

objects – such as collisions.

To generate a frame of the 3D visualization,

information from the buffers is used as well as information

related to the virtual environment, such as background,

ground geometry, position of objects, etc. The

synchronization at this point is implemented by granting

access to this information only once per frame, after each

step calculation.

5. Evaluation of our approach

Why this approach? As mentioned in section 3.2,

preliminary tests suggested that the first approach would

have a lower performance than the one implemented. The

explanation is as follows.

Sending and receiving messages in the multi-agent

platform (JADE) is done through behaviors defined in

each agent. The communication between the visualization

agent and the remote agent is done through the respective

behaviors. However, since the behaviors are executed in a

round robin schedule and messages are delivered through

a queue, the usage of behaviors to send messages and wait

for an answer will slow the performance of the system due

to the behaviors that can not be executed until the waiting

behavior receives its answer. Actually, the documentation

of the JADE platform strongly suggests designing

behaviors so that they don’t take too much time to

execute.

As can be inferred from section 2, this result is a step

into the research of distributed rendering systems, whose

main goal is to avoid the bottleneck associated with a

centralized rendering system. Also, as suggested in

section 4, there remains a bottleneck associated with the

rendering of the 3D visualization when it has to read the

buffers of the remote rendered objects. Even if these

buffers are used to generate the 3D visualization, however,

this is faster than generating the 3D visualization by

rendering each 3D object in a single computer. This is

because rendering an object involves complex calculations

for determining visible surfaces, light, color, shadow,

texture management, etc., rather than the use of a buffer

from which an image is taken and used as a sprite in the

3D visualization. To include a sprite in the rendering of

3D visualization the only computing process needed is the

overwriting of memory locations, which is far simpler and

faster than rendering a 3D object.

6. Results

Table 1 - Developed tests

Software running in PC ...

Server Client

Test 1 1 2 3 4

 I.1 A A - - -

 I.2 A A A - -

 I.3 A A A A -

 I.4 A A A A A

 II.1 A B - - -

 II.2 A A B - -

 III.1 A B C - -

 III.2 A A B C -

Table 1 can be interpreted in the following manner: as

an example, test I.3 is done by executing in computer A

the server software, and also three clients in computer A.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Test III.1 is done by running the server in computer A,

and 1 client in either computer B and C.

The Personal Computers used have the features shown

in table 2 (processor type, RAM memory, graphic card

and network card).

Table 2 - Hardware configuration for each personal

computer used in tests. “A” computer is used as a

server and “B” and “C” as a clients.

Cmp A Cmp B Cmp C

Proc

essor

Pent. IV 2

GHz

Pent. IV

1.6 GHz

Pent. IV 1.6

GHz

Mem 512 MB 512 MB 512 MB

O.S. Win 2K Win 2K Win 2K

Vid.

Card

32MB

ATI Rage

128 Ultra

16MB

ATI Rage

128 Ultra

16MB ATI

Rage 128

Ultra

Net

Card

CNet

PRO200

WL PCI

Fast

Ethernet

Cnet

PRO200

WL PCI

Fast

Ethernet

Cnet

PRO200WL

PCI Fast

Ethernet

All computers were connected to a LAN with 100 MB

bandwidth in a star topology.

Two main features were measured in the results stage:

the frames per second (fps) and the time. For the first

results we were interested in comparing performance

when running the server and the clients in the same

computer to performance when running the server and

clients in different machines. Fig. 7 shows the results.

Figure 7 - Results from Test 1 series (.1, .2, .3, .4)

In Fig. 7 we can see how having the server and several

clients running in the same computer affects the overall

performance. The more clients, the less the frames per

second. Further tests give more detailed numbers of this

relation and also show the impact of having objects

rendered locally and remotely.

Another interesting point to note from Fig. 7 is the

transition states, which are the time intervals in which

Java3D loads all the objects to use in the 3D environment.

Also during this time, the JADE platform makes all of its

connections and its agents start sending/receiving

messages. During this time interval, the rendering process

at the DirectX level does not have a lot of objects to

render because these objects must be added from the

Java3D layer, which is starting, and therefore high frame

rates are achieved during the transition states.

Knowing this, the interpretation of Fig. 7 is as follows.

The tests in which few clients are running take less time to

give all the objects to the DirectX layer and therefore their

transition states remain less than those of tests with more

clients. Thus, the amount of time the server will be in its

transition state directly depends on the number of objects

that will be loaded in the rendering process.

We calculated the average behavior for the 100

samples after the transition period ended. The results are

shown in Table 3.

Table 3: Average (without transition stages) behavior in each

test 1 series without transition states.

Test: I.1 I.2 I.3 I.4

Average 30.43
fps

28.04
fps

27.32
fps

27.03
fps

Table 3 shows the trend that with more clients running

in the same computer with the server, the performance is

reduced.

In Figs. 8 and 9 we can see how the frame rate is

reduced in both A and B once the client logs into the

server. Computer B has a higher frame rate than A

because the rendering of a remote object is simpler than

the rendering of the whole environment that is done in A.

Figure 8 – Test II.1, the frame rates of the client and the

server are reduced once the client logs in.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Figure 9 - Test II.2, the frame rates of client and server

are reduced once the client logs in. Even if the client

rate is reduced, the server rate is almost unaffected.

Without taking into account the transition states, the

average frame rates previous and posterior to the client

logging into the server are shown in table 4.

Table 4 - Average frame rates previous and posterior to

the client logging into the server.

Test PC Previous Posterior

A 282.433 36.301II.1

B 1029.931 17.666

A 170.400 43.513II.2

B 1032.625 8.904

Also notice that the frame rate of computer A, previous

to the client log, is higher in test II.1 than in test II.2. This

is because in test II.2, computer A supports the server and

a client. Test II has been repeated in test III by adding a

third computer. Figs. 10 and 11 show the results.

Figure 10 - Test III.1 the client in computer C logs first

in the server running in computer A.

Figure 11 - Test III.2 the client in computer B logs first

in the server in computer A that runs a client that logs

the last.

Table 5 - Average frame rates for test III, in the states

S1=Previous to any login, S2=After client in B log, S3=

After client in C log, S4= After client in A logs (only in

III.2).

Test PC S1 S2 S3 S4

A 170.4 53.7 52.8 -

B 782.1 11.3 13.7 -III.1

C 742.5 766.6 14.7 -

A 203.8 54.7 54.2 18.7

B 1072.7 13.1 17.7 16.3III.2

C 1253.1 1257.
7

27.5 26.4

7. Conclusions and future work

From the values in table 4 and 5 and related figures,

we can make the following key conclusion: even if the

frame rate in the client is reduced when it logs in the

server, the frame rate of the server is almost unaffected.

This shows that using distributed rendering, adding

objects to the environment has almost no effect on the

performance in the rendering process. Therefore, systems

with distributed rendering may support more complex

environments than those with a centralized rendering

process.

For the .2 subtest of test II and III we can see the effect

of having a client running in the same computer as the

server. In either case the execution/logging of a client in

the same computer as the server provokes a bigger

slowdown of the 3D visualization than the one provoked

by a remote client. Also, from the right-most column in

table 5 we can see that the logging of the client running in

the same computer than the server has a major effect in

computer A, but minimal in the other computers. This

demonstrates the independence of the remote clients.

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Further research must be done since new designs

inspired by this project may allow more complex

environments running in distributed environments than

those supported in the same system but without distributed

capacities to support rendering. Even so, the development

of a generic platform that provides the services of

distributed rendering, in a transparent way is an appealing

prospect.

By using platforms for distributed computing (JADE)

and visualization (Java3D) the development was fast, but

at the cost of performance and delays due to the time

required to learn the platforms and implement the

additional functionality required for the project. The cost

in performance is due to the number of layers involved in

systems where several platforms are involved. In Fig. 12

we show the layers involved in this project.

Figure 12 - The layers involved in this project.

Therefore, if a generic platform were to be developed

then it is strongly recommended that it follow a design

with fewer layers, and making use of another technology

that does not use either Java3D or Java, because these are

slow and may cause complex behaviors of the 3D objects

in the virtual environment to be very slow.

Some questions rise in this project. When would it be

better to have distributed rendering than a centralized

rendering? Which are the costs and benefits? From the

results obtained in this project we infer the relation shown

in Fig. 13.

Figure 13 – Performance estimation between local and

distributed rendering.

The Performance Difference (PD) between systems

with distributed rendering and those with local rendering

depends on the speed of the communication that allows

the transfer of the remotely rendered objects.

The Complexity Support Difference (CSD) exists

because in systems with distributed rendering, the

bottleneck associated with a centralized rendering process

is avoided and therefore this kind of system may support

more complex environments than those supported by

systems with centralized rendering.

Finally, it is important to understand that when using

or creating a communication platform it is very important

that the managing of messages is done asynchronously

(parallel programming) to improve performance, rather

than in a simulated asynchronously way.

8. Acknowledgements

The authors thank all the persons and organizations

involved in the development of this project, in particular

the Departamento de Electronica-C.B.I. of the Universidad

Autonoma Metropolitana-Azcapotzalco and the

CONACyT (National Council for Science and Technology

- Mexico) who are sponsoring the PhD studies of Risto

Rangel-Kuoppa. Also special thanks to the ARIES Lab at

the Department of Computer Science of the University of

Saskatchewan for the infrastructure provided for the tests.

9. References

[1] J. P. Singh, A. Gupta and M. Levoy, “Parallel Visualization

Algorithms: Performance and Architectural Implications”, IEEE

Computer Journal, July 1994, pp. 45- 55.

[2] W. H. Scullin, L.F. Tavera and C. L. Elford, “Virtual Reality

and Parallel Systems Performance Analysis”, IEEE Computer

Journal, November 1995, pp. 57- 67.

[3] E. Shaffer, D. A. Reed, S. Whitmore and B. Schaeffer,

“Virtue: Performance Visualization of Parallel and Distributed

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

Applications”, IEEE Computer Journal, December 1999, pp. 44-

51.

[4] H. J. Noordmans, Hans T.M. van der Voort, A. W.M.

Smeulders, “Perception-Based Fast Rendering and Antialiasing

of Walkthrough Sequences”, IEEE Transaction on Visualization

and Computer Graphics, October 2000, pp. 196- 207.

[5] H. Hauser, L. Mroz, G. I. Bischi and M. E. Gröller ” Two-

Level Volume Rendering”, IEEE Transaction on Visualization

and Computer Graphics, July 2001, pp. 242- 252.

[6] D. Gordon “The Floating Column Algorithm for Shaded,

Parallel Display of Function Surfaces without Patches” IEEE

Transaction on Visualization and Computer Graphics, January

2002, pp. 76 - 91.

[7] K. Mueller, N. Shareef, J. Huang and R. Crawfis “High-

Quality Splatting on Rectilinear Grids with Efficient Culling of

Occluded Voxels” ” IEEE Transaction on Visualization and

Computer Graphics, April 1999, pp. 116 – 134.

[8] E. B. Lum, K. Ma, J. Clyne “A Hardware-Assisted Scalable

Solution for Interactive Volume Rendering of Time-Varying

Data”, IEEE Computer Journal, July 2002, pp. 286-301.

[9] G. Kindlmann, D. Weinstein and D. Hart “Strategies for

Direct Volume Rendering of Diffusion Tensor Fields”, IEEE

Computer Journal, April 2000, pp. 124-138.

[10] A. Raviv, G. Elber “Interactive Direct Rendering of

Trivariate B-Spline Scalar Functions”, IEEE Computer Journal,

April 2001, pp. 109-119.

[11] G. J. Grevera, J. K. Udupa, . Odhner, “An Order of

Magnitude Faster Isosurface Rendering in Software on a PC than

Using Dedicated, General Purpose Rendering Hardware”, IEEE

Computer Journal, October 2000, pp. 335-345.

[12] F. Neyret, “Modeling, Animating and Rendering Complex

Scenes Using Volumetric Textures”, IEEE Computer Journal,

January 1998, pp. 55-70.

[13] K. Kim, C. M. Wittenbrink, A. Pang, “Extended

Specifications and Test Data Sets for Data Level Comparisons of

Direct Volume Rendering Algorithms” IEEE Computer Journal,

October 2001, pp. 299-317.

[14] J. C. Xia, J. El-Sana, A.Varshney, “Adaptive Real-Time

Level-of-Detail-Based Rendering for Polygonal Models”, IEEE

Computer Journal, April 1997, pp. 171-183.

[15] Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga,

S. Tamura, R. Bikinis, “Tissue Classification Based on 3D Local

Intensity Structures for Volume Rendering”, IEEE Computer

Journal, April 2000, pp. 160-180.

[16] J.M. Frahm, J.F. Evers-senne amd R. CockY., “Network

Protocol for Interactions and Scalable Distributed Visualization”,

IEEE Proceeding of the first international Symposium on 3D

data processing and visualization, April 2002, pp. 18-26.

[17] L. Moll, A. Heirich and M. Shand, “Sepia: scalable 3D

composition using PCI Pamette”, Proceeding of the 2do IEEE

Symposium on computer and communications, September 1997,

pp. 230-240.

Internet sites

[18]http://sharon.cselt.it/projects/jade/-Project JADE homepage.

[19]DirectXhomepage

http://www.microsoft.com/windows/directx/default.asp

[20]http://www.j3d.org/implementation/java3d-

OpenGLvsDirectX.html

[21]http://www.tommtisystems.de/go.html?http://www.tommti-

systems.com/main-

Dateien/reviews/opengldirectx/openglvsdirectx.html

[22]http://java.sun.com/products/java-media/3D/

[23]http://www.fraps.com

Proceedings of the Fourth Mexican International Conference on Computer Science (ENC’03)
0-7695-1915-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

