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Abstract

In this work, we propose a 3D rendering system that  

distributes rendering tasks across a multi-agent platform. 

The new approach is based on a multi-agent platform, 

where the goal is to create a virtual 3D environment. The 

main task is the rendering of individual objects. Each 3D 

object must be rendered in a remote unit; the resulting 

rendering is sent through the network to a 3D 

visualization process which generates the visualization of 

the whole 3D environment. The object movement and 

remote communication requirements have been 

implemented using a multi-agent system platform. The 

distributed system is implemented in  Windows O.S., using 

DirectX graphical libraries and JAVA programming. The 

multi-agent platform used is JADE. The computer 

connection is a LAN at 100 MBS in a star topology.   

1. Introduction 

The work in this paper is motivated by our effort to 

build a distributed 3D rendering system that uses a set of 

personal computers to provide real-time rendering 

performance. Rendering 3D objects on a single PC 

presents no problem [4,8,9,10,11,12,14,15]; additionally 

existing protocols can be used to establish a network 

[16,17]. It remains to show how the computers 

communicate in order to share the rendered objects and 

generate a single 3D visualization of the distributed 

environment. 

The general idea, having relaxed the constraints 

involved, is that distributed computing has proven to be a 

good approach to solve problems by decreasing the time 

of execution when executing parallel tasks: several 

computing resources can be used instead of one single 

powerful computing resource.  In this work, we employ 

this approach to get a system for rendering virtual 

environments while avoiding the bottleneck of a 

centralized rendering process. The resulting system is able 

to support in terms of visualization performance more 

complex distributed virtual worlds than would a system 

with a centralized rendering process.  Also, the approach 

we will describe makes use of a multi-agent 

architecture[1,2,3,21,23] for the distributed computing 

requirements. 

The remainder of the paper is organized as follows. In 

section 2 we discuss the problem formulation; in section 3 

we describe a possible solution; in section 4 we give 

details of our approach; we present our evaluation in 

section 5; and finally, we show results and conclusions in 

sections 6 and 7 respectively.  

2. Problem formulation

Computing systems that are used to make 3D 

visualizations often have the architecture shown in Fig. 1.  

These architectures may or may not have distributed 

computing processes for the behavior of the objects in the 

virtual environment, especially if it is a dynamic 

environment, but the 3D visualization is centralized. 

Centralizing the 3D processing creates a bottleneck 

that restricts the complexity of the 3D environment.  Since 

computing power has increased not only in standard 

processing capabilities but also in graphics processing, 

using this graphics processing power in a distributed way 

is a natural consequence of distributed computing. We 

want to make use of distributed processing units to obtain 

a 3D visualization as shown in Fig. 2. 
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Figure 1 - Typical architecture of a 3D visualization 

system. The 3D environment information is computed 

either by a distributed or a centralized Environment 

Processing component and passed to a centralized 3D 

processing component in order to generate the 3D 

visualization. 

Figure 2 - Schema of the architecture which uses 

distributed rendering units to create a 3D visualization.  

In particular, the problem is to create a virtual 3D 

environment in which there exist 3D objects associated 

with remote entities. Each of these 3D objects must be 

rendered in a remote graphical unit. The rendered objects 

will be sent through the network to a 3D visualization 

process which will compile the remote rendered images of 

all the objects into a visualization of the whole 3D 

environment.  The problem is inspired by the idea of 

having distributed systems that support much more 

complex virtual environments by using distributed 

rendering capabilities than those using centralized 

rendering.  We can therefore obtain the capability of 

supporting more complex environments with the same 

infrastructure.  Applications of this work would be any 

architecture for distributed environments with a graphical 

visualization, such as video games, CAVEs, distributed 

virtual environments, etc. 

The object movement and remote communication 

requirements have been implemented using a multi-agent 

system platform.  We use a multi-agent platform in order 

to reduce the development time by using a tested tool.  So, 

the remote entities with which the 3D objects are 

associated are remote agents in the multi-agent system

3. Overview of technology 

This section has been split into two parts: the first  

describes technical considerations, while the second one 

describes the logical solutions, i.e., the algorithms used 

and the reasons why. 

3.1 Technical considerations 

The following considerations were taken into account 

in developing the project:   

Operating system - Two main options were 

available; Windows based or Linux. No other 

operating system was considered since these two 

are the most popular.  We chose Windows since 

there are more 3D API’s available and these 

make real use of the graphic acceleration 

hardware in the computers, unlike Linux API’s 

that often do not use all the hardware acceleration 

capabilities. 

3D API – Two main options were considered; 

DirectX or OpenGL.  Since it is not clear which 

of DirectX[19] or OpenGL[20] has better 

performance, the decision was based on the 

authors preferences which is for DirectX. 

Development Language – For purposes of timely 

development the chosen language is Java, with 

NetBeans’ IDE. 

Multi-Agent platform – The options were: Zeus, 

ADK and JADE [18], from which JADE was 

chosen due to the wealth of documentation and 

on-line resources available. 

3.2 Logical solutions 

There is no difficulty in rendering 3D objects in 

different computers; but we have many options in 

deciding how the computers communicate in order to 

share the rendered objects and generate a single 3D 

visualization of the distributed environment. 

The first approach that we considered follows a 

request policy.  This means that for generating each frame 

of the 3D visualization, all the remote agents are requested 

to send the rendered image of their associated 3D object.  

To generate the rendered image of the 3D object each 
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agent must know the state of the object.  This state (speed, 

position, orientation) is sent to the agent so it can re-orient 

the 3D object as needed and render it correctly according 

to its current state in the environment.  This approach is 

shown in Fig. 3. 

Figure 3 - First approach: to generate each frame of the 

3D visualization each agent is requested to send its 

rendered object, and the request is done by updating 

the object state in the environment. 

It is important to recognize that the multi-agent 

platform not only includes agents that make the remote 

rendering, but also one specialized agent, the visualization 

agent, whose main task is management of the 3D 

environment (objects’ movement, collisions, etc.) and the 

rendering of the 3D visualization, i.e., the final view. 

Preliminary tests suggested that this approach would 

have worse performance than the one finally implemented.  

The performance measured in the preliminary tests was 

such that the frame rate would be less than 10 frames per 

second (fps) with the server agent and one client agent 

running in the same computer 

4. Description of our approach 

Instead of a request-answer policy, our approach uses 

polling.  Each remote agent is associated with a buffer in 

which the rendered image is stored; the agent that 

generates the 3D visualization takes the information from 

the buffer.  This approach has better performance than the 

one explained in section 3.2, but it has the disadvantage 

that, depending on the speed of transferring the object 

from the remote agent to the visualization agent, there will 

be a difference between the logical state of the object in 

the environment and the visualized state.  This approach is 

shown in Fig. 4. 

Figure 4 - Implemented approach: updates to the state 

of the object and update to the buffer are made 

asynchronously. 

It is also important to understand that in this approach, 

updating the state of the object in the environment is done 

asynchronously with delivering the rendered objects. 

Now that the main functionality of the implemented 

approach has been exposed, an important feature will be 

explained in detail.  Synchronization in distributed 

environments is a very important issue because it allows 

having the state of the environment shared among its 

distributed components.  In this work, synchronization is 

not only present when communicating the state of the 

object in the environment, but also when the graphical 

information is ready to be communicated.  In Fig. 5 we 

can see the problems that may arise when synchronization 

is not available at the moment of sharing graphical 

information. 

Figure 5 – Synchronization problem: If the image is 

sent when the frame has not been completely 

rendered, then visual distortion, due to object’s 

movements in the environment, may occur. 

Another problem of visual synchronization is called 

flickering, where the image at the display seems to flicker.  

The usual source of flicker is that the information 

displayed is being erased and rewritten several times per 

second.  This problem is usually solved by using the back

buffer rendering technique[22] and since this is 

automatically implemented in Java3D there was no related 

implementation in the project. In Fig. 6 we can see the 

points at which synchronization has been implemented in 

this paper. 
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Figure 6 - Synchronization points of the project; A-

Remote Rendering, B-Buffers Access, C-Remote state 

update, D-Environment state update. 

The synchronization points are as follows: 

A. Remote rendering synchronization.  A rendered 

object will be sent to the visualization agent only 

when the object is fully rendered. 

B. Buffer access synchronizations.  Access/read to 

the buffers from the visualization agent is done 

prior and only once per frame of the 3D 

visualization and only when the buffers have a 

full rendered object on them. I.e., the 

visualization agent reads from the buffers once 

per frame, and is permitted to read only when the 

buffer contains a completely rendered object.  

The remote agents can write to the buffer only 

when the visualization agent is finished reading. 

C & D. State update synchronizations.  Remote state 

updates are done once per step; updates are sent 

to all remote agents.  A step is an advance in 

virtual time by a small increment and the 

calculation of the new states of all objects in the 

environment in accordance to their positions, 

orientations, speed, and interactions with other 

objects – such as collisions. 

To generate a frame of the 3D visualization, 

information from the buffers is used as well as information 

related to the virtual environment, such as background, 

ground geometry, position of objects, etc.  The 

synchronization at this point is implemented by granting 

access to this information only once per frame, after each 

step calculation. 

5. Evaluation of our approach 

Why this approach? As mentioned in section 3.2, 

preliminary tests suggested that the first approach would 

have a lower performance than the one implemented.  The 

explanation is as follows. 

Sending and receiving messages in the multi-agent 

platform (JADE) is done through behaviors defined in 

each agent.  The communication between the visualization 

agent and the remote agent is done through the respective 

behaviors. However, since the behaviors are executed in a 

round robin schedule and messages are delivered through 

a queue, the usage of behaviors to send messages and wait 

for an answer will slow the performance of the system due 

to the behaviors that can not be executed until the waiting 

behavior receives its answer.  Actually, the documentation 

of the JADE platform strongly suggests designing 

behaviors so that they don’t take too much time to 

execute.

As can be inferred from section 2, this result is a step 

into the research of distributed rendering systems, whose 

main goal is to avoid the bottleneck associated with a 

centralized rendering system.  Also, as suggested in 

section 4, there remains a bottleneck associated with the 

rendering of the 3D visualization when it has to read the 

buffers of the remote rendered objects.  Even if these 

buffers are used to generate the 3D visualization, however, 

this is faster than generating the 3D visualization by 

rendering each 3D object in a single computer.  This is 

because rendering an object involves complex calculations 

for determining visible surfaces, light, color, shadow, 

texture management, etc., rather than the use of a buffer 

from which an image is taken and used as a sprite in the 

3D visualization.  To include a sprite in the rendering of 

3D visualization the only computing process needed is the 

overwriting of memory locations, which is far simpler and 

faster than rendering a 3D object. 

6. Results

Table 1 - Developed tests 

Software running in PC ... 

Server Client 

Test 1 1 2 3 4

 I.1 A A - - - 

 I.2 A A A - - 

 I.3 A A A A - 

 I.4 A A A A A 

 II.1 A B - - - 

 II.2 A A B - - 

 III.1 A B C - - 

 III.2 A A B C - 

Table 1 can be interpreted in the following manner: as 

an example, test I.3 is done by executing in computer A 

the server software, and also three clients in computer A.  
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Test III.1 is done by running the server in computer A, 

and 1 client in either computer B and C. 

The Personal Computers used have the features shown 

in table 2 (processor type, RAM memory, graphic card 

and network card). 

Table 2 - Hardware configuration for each personal 

computer used in tests. “A” computer is used as a 

server and “B” and “C” as a clients. 

Cmp A Cmp B Cmp C 

Proc

essor

Pent. IV 2 

GHz

Pent. IV 

1.6 GHz 

Pent. IV 1.6 

GHz

Mem 512 MB 512 MB 512 MB 

O.S. Win 2K Win 2K Win 2K 

Vid.

Card 

32MB 

ATI Rage 

128 Ultra 

16MB 

ATI Rage 

128 Ultra 

16MB ATI 

Rage 128 

Ultra

Net

Card 

CNet

PRO200

WL PCI 

Fast

Ethernet

Cnet 

PRO200

WL PCI 

Fast

Ethernet

Cnet 

PRO200WL 

PCI Fast 

Ethernet

All computers were connected to a LAN with 100 MB 

bandwidth in a star topology. 

Two main features were measured in the results stage: 

the frames per second (fps) and the time. For the first 

results we were interested in comparing performance 

when running the server and the clients in the same 

computer to performance when running the server and 

clients in different machines.  Fig. 7 shows the results. 

Figure 7 - Results from Test 1 series (.1, .2, .3, .4) 

In Fig. 7 we can see how having the server and several 

clients running in the same computer affects the overall 

performance.  The more clients, the less the frames per 

second.  Further tests give more detailed numbers of this 

relation and also show the impact of having objects 

rendered locally and remotely. 

Another interesting point to note from Fig. 7 is the 

transition states, which are the time intervals in which 

Java3D loads all the objects to use in the 3D environment. 

Also during this time, the JADE platform makes all of its 

connections and its agents start sending/receiving 

messages.  During this time interval, the rendering process 

at the DirectX level does not have a lot of objects to 

render because these objects must be added from the 

Java3D layer, which is starting, and therefore high frame 

rates are achieved during the transition states.

Knowing this, the interpretation of Fig. 7 is as follows.  

The tests in which few clients are running take less time to 

give all the objects to the DirectX layer and therefore their 

transition states remain less than those of tests with more 

clients.  Thus, the amount of time the server will be in its 

transition state directly depends on the number of objects 

that will be loaded in the rendering process. 

We calculated the average behavior for the 100 

samples after the transition period ended.  The results are 

shown in Table 3. 

Table 3: Average (without transition stages) behavior in each 

test 1 series without transition states. 

Test: I.1 I.2 I.3 I.4

Average 30.43
fps

28.04
fps

27.32
fps

27.03
fps

Table 3 shows the trend that with more clients running 

in the same computer with the server, the performance is 

reduced.

In Figs. 8 and 9 we can see how the frame rate is 

reduced in both A and B once the client logs into the 

server.  Computer B has a higher frame rate than A 

because the rendering of a remote object is simpler than 

the rendering of the whole environment that is done in A. 

Figure 8 – Test II.1, the frame rates of the client and the 

server are reduced once the client logs in. 
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Figure 9 - Test II.2, the frame rates of client and server 

are reduced once the client logs in.  Even if the client 

rate is reduced, the server rate is almost unaffected. 

Without taking into account the transition states, the 

average frame rates previous and posterior to the client 

logging into the server are shown in table 4. 

Table 4 - Average frame rates previous and posterior to 

the client logging into the server. 

Test PC Previous Posterior

A 282.433 36.301II.1

B 1029.931 17.666

A 170.400 43.513II.2

B 1032.625 8.904

Also notice that the frame rate of computer A, previous 

to the client log, is higher in test II.1 than in test II.2.  This 

is because in test II.2, computer A supports the server and 

a client.  Test II has been repeated in test III by adding a 

third computer.  Figs. 10 and 11 show the results. 

Figure 10 - Test III.1 the client in computer C logs first 

in the server running in computer A. 

Figure 11 - Test III.2 the client in computer B logs first 

in the server in computer A that runs a client that logs 

the last. 

Table 5 - Average frame rates for test III, in the states 

S1=Previous to any login, S2=After client in B log, S3= 

After client in C log, S4= After client in A logs (only in 

III.2).

Test PC S1 S2 S3 S4

A 170.4 53.7 52.8 -

B 782.1 11.3 13.7 -III.1

C 742.5 766.6 14.7 -

A 203.8 54.7 54.2 18.7

B 1072.7 13.1 17.7 16.3III.2

C 1253.1 1257.
7

27.5 26.4

7. Conclusions and future work

From the values in table 4 and 5 and related figures, 

we can make the following key conclusion: even if the 

frame rate in the client is reduced when it logs in the 

server, the frame rate of the server is almost unaffected.  

This shows that using distributed rendering, adding 

objects to the environment has almost no effect on the 

performance in the rendering process.  Therefore, systems 

with distributed rendering may support more complex 

environments than those with a centralized rendering 

process.

For the .2 subtest of test II and III we can see the effect 

of having a client running in the same computer as the 

server.  In either case the execution/logging of a client in 

the same computer as the server provokes a bigger 

slowdown of the 3D visualization than the one provoked 

by a remote client.  Also, from the right-most column in 

table 5 we can see that the logging of the client running in 

the same computer than the server has a major effect in 

computer A, but minimal in the other computers.  This 

demonstrates the independence of the remote clients. 
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Further research must be done since new designs 

inspired by this project may allow more complex 

environments running in distributed environments than 

those supported in the same system but without distributed 

capacities to support rendering.  Even so, the development 

of a generic platform that provides the services of 

distributed rendering, in a transparent way is an appealing 

prospect. 

By using platforms for distributed computing (JADE) 

and visualization (Java3D) the development was fast, but 

at the cost of performance and delays due to the time 

required to learn the platforms and implement the 

additional functionality required for the project.  The cost 

in performance is due to the number of layers involved in 

systems where several platforms are involved.  In Fig. 12 

we show the layers involved in this project. 

Figure 12 - The layers involved in this project. 

Therefore, if a generic platform were to be developed 

then it is strongly recommended that it follow a design 

with fewer layers,   and making use of another technology 

that does not use either Java3D or Java, because these are 

slow and may cause complex behaviors of the 3D objects 

in the virtual environment to be very slow. 

Some questions rise in this project. When would it be 

better to have distributed rendering than a centralized 

rendering? Which are the costs and benefits? From the 

results obtained in this project we infer the relation shown 

in Fig. 13. 

Figure 13 – Performance estimation between local and 

distributed rendering. 

The Performance Difference (PD) between systems 

with distributed rendering and those with local rendering 

depends on the speed of the communication that allows 

the transfer of the remotely rendered objects. 

The Complexity Support Difference (CSD) exists 

because in systems with distributed rendering, the 

bottleneck associated with a centralized rendering process 

is avoided and therefore this kind of system may support 

more complex environments than those supported by 

systems with centralized rendering. 

Finally, it is important to understand that when using 

or creating a communication platform it is very important 

that the managing of messages is done asynchronously 

(parallel programming) to improve performance, rather 

than in a simulated asynchronously way. 
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