
A Framework for Coherent Emergent Stories

Gail Carmichael
School of Computer Science

Carleton University
Ottawa, Canada

gail_c@scs.carleton.ca

David Mould
School of Computer Science

Carleton University
Ottawa, Canada

mould@scs.carleton.ca

ABSTRACT
Crafting satisfying narratives while preserving player free-
dom is a longstanding challenge for computer games. The
quest structure used by many games allows players to ex-
perience content nonlinearly, but risks creating disjointed
stories when side quests only minimally integrate with the
main story. We propose a flexible, scene-based emergent
story system that reacts to the player’s actions while main-
taining a reasonable amount of authorial control over the
story. Based on the philosophy of story scenes as kernels
or satellites, we define a minimal story graph that initially
contains mostly disconnected nodes. Over time, the graph
is built dynamically from offered to the player. In this pa-
per, we describe the framework of our system and present
an early prototype game as a case study. We end with a
vision of how our framework could be used to create more
coherent, emergent stories in games.

Categories and Subject Descriptors
K.8.0 [General]: Games

General Terms
Storytelling in games

Keywords
interactive storytelling, games, agency

1. INTRODUCTION
Effectively integrating stories into games has long been a

challenge for game designers and technologists alike. Some
games provide a story on rails, where everything is prede-
termined and players have little to no choice with respect
to the story. Others offer a substantial amount of freedom,
resulting in a disjointed story with an unsatisfactory lack
of direction. Stories in games still do not reliably react to
gameplay while maintaining a satisfactory level of structure
and player guidance.

Stories seen in traditional media such as films and nov-
els are more dramatically compelling than stories in video
games. Games often lack the strong themes and believable
characters found in other media, and when they do exist,
story systems do not always represent them well [4]. Other
media also makes connections between story elements more
effectively, giving what Bordwell and Thompson call“a sense
that ‘everything is there”’ [3]. Connecting back to previ-
ous events is important in storytelling [11], yet games rarely
make an effort to do this apart from the main plot.

Quest systems, used in role-playing and adventure games,
partition game activities into small pieces; each quest con-
tains a fragmentary story and provides short-term gameplay
goals. Story consistency is enhanced by making the quests
self-contained and largely independent. Quest-based games
feature open worlds where players are free to navigate a ge-
ographical space and choose what quest to do next, thus
accessing game content in a nonlinear fashion, but the re-
sulting story tends to be disjointed and even inconsistent
[22]. In part, the problems are due to players encountering
quests that do not fit with the current story state, and the
fact that quests do not purposefully make connections to the
story seen so far.

We propose a framework that considers both gameplay
and story progression when dynamically building stories for
open world roleplaying and adventure games. The frame-
work would ensure that only scenes that fit with both player
actions and the current state of the story are available at any
given moment. This does somewhat limit the player’s free-
dom in choosing what to do next, but as Swartjes [23] points
out, “the player does not want complete navigational and
expressive freedom per se, but wants to be able to pursue
action that is meaningful.” Our goal is to produce a system
that connects to gameplay and offers relevant story choices,
but whose content is relatively easy to reason about. The
story that results should be coherent as well as satisfying to
players. We explore a specific use of our framework in our
case study using the story of Jason and the Golden Fleece,
described in Section 4. We conclude with a more detailed
vision of how our framework could be used as it is further
developed in Section 5.

2. BACKGROUND
In this paper, we are concerned specifically with emergent

stories. Lindley describes emergent stories as the“emergence
of well-defined high level narrative forms from the interac-
tion of smaller scale elements . . . in a system that does
not contain any representation of that high level form” [12].

A spectrum of approaches to designing such systems spans
from character-based to plot-based. Dória et al. [8] define
a character-based story as one that “emerges from the real
time interaction between autonomous agents, each one with
its own objectives” while a plot-based story keeps players on
a path that does not stray far from the author’s intent.

Façade [14] is character-based. Though story progression
statistics help maintain a reasonable story arc, its story is
largely organized according to interactions with and reac-
tions from the two non-player characters. Prom Week [15],
based on the social mechanics engine Comme il Faut, is also
character-based. Instead of a set plot, players are presented
with a social goal and a selection of social interactions with
which to obtain it. Sullivan’s Mismanor [22], whose engine
is based on Comme il Faut, also focuses on social mechanics,
but is closer to the plot-based end of the spectrum with its
traditional quest structure. Games that feature believable
characters acting as autonomous agents, but whose plot is
closely overseen by a story director, are found in the middle
of the spectrum. Riedl and Stern’s IN-TALE [17] and Swart-
jes’ Story Facilitator [23] are examples. Systems whose or-
ganizing principles are based on story elements rather than
autonomous agents are on the plot-based end of the spec-
trum. This includes games with traditional quest structures
and is where our framework lies.

Spierling et al.’s [21] four-level architecture for emergent
stories spans the entire spectrum and allows for a variable
amount of autonomy on each level. The story engine de-
cides which scene to play next or provides a narrative func-
tion that the next scene should fulfill. The scene action
engine presents the selected scene with a pre-authored or
dynamically generated script. The character conversation
engine ensures that characters act according to their per-
sonality traits through pre-scripted dialog or as intelligent,
autonomous agents. Finally, the actor avatar engine takes
care of animation, speech, and sound. The core of our frame-
work involves deciding what scenes to offer to players next;
this task is found at the level of the story engine. In our vi-
sion, chosen scenes would be dynamically modified according
to story and game history, similar to what the scene action
engine accomplishes. We are not focused on the character-
level engines, but Spierling et al.’s system gives insight into
how character-based aspects of emergent stories can be in-
corporated into our framework.

Story graphs are commonly used to represent stories in
games. Graphs can be used at various levels of abstraction.
Stories can be broken into scenes that are stored in nodes.
Our scene nodes can represent scenes at different levels of
granularity, but typically a node will contain a single story
or gameplay event. Mott and Lester’s narrative planner U-
Director [16] uses a story graph with individual events as
nodes. The planner uses the current state of the game world
and the user’s beliefs about it to decide what event should
be presented to the user next. Bayesian inference algorithms
are used in the planning process. Additionally, producing
the story networks needed by the planner is an arduous task.
Our framework uses simple calculations to prioritize scene
nodes and gives authors the ability to reason about each
node independently.

Central to our system is the notion that scene nodes can
be categorized as either kernels or satellites, terminology
adopted from Chatman [5]. Kernels represent plot points
and are like a story’s skeleton [6]: the story would not sur-

vive intact without them. Satellites flesh out the story, de-
velop character, and illustrate theme. Any individual satel-
lite could be skipped without penalty. Game stories typi-
cally contain a much lower ratio of satellites to kernels than
traditional media [10], suggesting that one way to create
more dramatically compelling stories in games is to increase
this ratio. Stories created with our framework will contain
many more flexible satellites than rigid kernels; the ques-
tion is how these satellites should be arranged so that the
resulting story makes sense.

The model of kernels and satellites is compatible with
traditional ways of thinking. “Beads-on-a-string” involve
“small areas where there is some freedom of action until
some event occurs, at which point a transition to the next
bead is opened.” [7] The beads-on-a-string model is similar
to the kernel structure in that both offer freedom of action
in between key events. The use of kernels and satellites also
allows for implicit story creation; that is, the ability to spec-
ify a model from which a story will dynamically emerge at
run-time [21, 23].

The idea of strategically building stories during play con-
trasts with other approaches that help make game stories
more coherent or satisfying. For example, Shelley aims to
prevent players from breaking out of a predefined sequence
of events rather than build those sequences on the fly [20].
Other systems build dynamic models of gameplay styles to
provide content most suitable to the player [25, 24]. We pro-
pose building a local graph dynamically by making a subset
of suitable nodes available for players to choose from at any
given time. Suitability is based on gameplay as well as story
progression.

3. OVERVIEW
We propose a framework based on a collection of scene

nodes organized into a loosely connected story graph. A
scene node, also referred to simply as a node, typically fo-
cuses on a single story or gameplay event. For example,
a node might reveal a key piece of information about the
player’s current challenge, or represent the act of acquiring a
specific inventory item. By storing gameplay events as scene
nodes, the framework can control access to both story and
gameplay nodes using the same mechanisms. Some nodes
are attached to a specific spatial location or a type of geo-
graphic area, such as in the woods or on water. Nodes may
also involve choices whose outcomes can affect the story. A
player might perform a sacrifice to feed the crew or skip it
to appease the gods.

Our framework allows game designers to create coherent
emergent stories based on a strong but minimal backbone
of kernels and a large grab bag of loosely connected satel-
lites. Kernel scene nodes, also called kernels, represent ma-
jor plot points. All players must experience a complete path
through the kernel structure, ensuring there are no unre-
solved plot events. Kernels need not be linear; branching
is possible. Satellite scene nodes, or satellites, can be used
to further the story’s themes or characters, always reinforc-
ing the overall story progression. Satellites used for charac-
ter development will focus on characters that are predeter-
mined by writers, rather than the player-defined protagonist
common in RPGs. Satellites do not introduce new themes;
rather, they reinforce existing themes that are interwoven
through the story. Satellites can also potentially alter the
player’s understanding of the story without changing the

Story State Scene 2: Learn that nobody has
dared face this enemy before

Scene 3: Hero previously acquired
his weapon and is too scared to use it

Themes:
 Finding bravery: 6

Characters:
 Hero: 4
 Enemy: 5

Tension: 7

Prerequisite:
 Completed Scene: 1

Characters:
 Enemy: 6

Characters:
 Hero: 6

Themes:
 Finding bravery: 5

Themes:
 Finding bravery: 3

Scene 1: Player volunteers
to stop the threat of a
nearby enemy

Figure 1: Example story and scene states.

events themselves. While kernels represent rigid plot points,
satellites are flexible; they can fit anywhere, and while they
do not change things, they can give new insights. Every
scene node is either a kernel or a satellite.

A subset of all scene nodes is made available to players at
all times, depending on a set of prerequisites and priorities
assigned in a process described below. Players can usually
choose to consume one of the available nodes, though some-
times they are required to consume one node in particular
during a forced encounter.

A key aspect of the framework is its ability to match the
current story state with the node choices that become avail-
able. Mallon and Webb’s empirical research on players of
roleplaying and adventure games emphasized the need to
remember player actions and provide “calculated, measured
consequences, appropriate to circumstance and player mo-
tivation” [13]. We ensure the current set of nodes available
to players is consistent with the story state by constantly
monitoring the story state and using it to recalculate the
priorities for scene nodes. How this is done is explained
along with other aspects of the framework in the following
sections.

3.1 Definitions
Before we proceed with explaining the framework’s me-

chanics, we define the key components of our framework.
A quantifiable story element (QSE) is a numeric or boolean
variable representing some story element in a quantifiable
way. Examples include a numeric tension value, the time
since a particular theme has been shown, and the content-
edness of a particular character. QSEs for tension, charac-
ter, and theme appear in the sample story and scene states
depicted in Figure 1.

The story state is defined as a collection of state values
– one for each QSE. The story state is used to calculate
priority values for scene nodes. Gameplay statistics are not
included here, though they can also be used to calculate
scene priorities. An example story state is shown in Figure
1. Some QSEs represent desire to see a particular element
such as a theme: the higher the number is, the longer it
has been since a scene featured that theme. The desire is
increased after any node is consumed according to a rate
assigned to each QSE. Other QSEs represent quantities of
interest to the designer, such as tension.

A scene state is used to tag a scene node with informa-
tion about how that scene functions within the story. The
scene state is a collection of state values representing the
QSE relevant to that scene. The higher a value is, the more
prominently that element features in the scene. We call this
value the QSE’s relevance. Most scene state values are or-
ganized into categories, such as theme and character. These
values in a scene state are used when calculating a scene’s
priority. In Figure 1, Scene 2 is about the enemy, so the en-
emy character’s relevance is high. Scene 3 is about the hero
and reflects the theme ‘finding bravery,’ so these relevance
values are high for this scene.

A prerequisite is a rule that determines whether a scene
should be available at all. Each node can have zero or more
prerequisites assigned to it. Scenes that fail any of their
prerequisites will not be available to players. For example,
Scene 2 will not be available until Scene 1 has been con-
sumed, while Scene 3 may be available before that happens.

A priority is assigned to each node so that the nodes with
highest priority can be made available to players. A node’s
priority is calculated as the sum of modifier values. A mod-
ifier is an aggregate score for a category of QSEs. For ex-
ample, there will be one modifier for the themes category
and one for the character category. The sum of all modifiers
relevant to a particular scene state yields the priority for
that scene. We discuss how the modifier value is calculated
in the next section.

A scene’s outcome adjusts specified story state values after
a scene has been presented. For example, the outcome would
cause the story state’s tension value to decrease if the scene
was intended as comic relief. The outcome also stores a
representation of any feedback given to the player after the
scene is finished. Feedback may have come after the player
makes a choice during the scene. Scene 2 in Figure 1 would
reduce the story state’s desire for the enemy character, and
Scene 3 would reduce the desire values for both the ‘finding
bravery’ theme and the hero character.

3.2 Mechanics
Our framework calculates priorities for scene nodes in real

time to ensure that the player is presented with the scenes
that best fit with the player’s story progression and game-
play up to that point. The overall flow of this process is
summarized in Figure 2. The game will first obtain a list of
all scene nodes defined by the designer, and then filter these
nodes according to whether or not they pass their prerequi-
sites. Priorities are calculated for the nodes that remain by
computing a modifier for each category and then summing
the category modifiers together. The top-scoring nodes are
made available to the player, and the player is free to choose
which to consume next.

Prerequisites can be one of several types. Access to a
scene can be controlled by a criteria based on:

• the value of a QSE in the story state (for example,
tension must exceed 4)

• the value of a variable in the game state (for example,
whether an item is in the player’s inventory)

• the history of completed scenes (for example, a scene
may no longer be available beyond a certain point in
the story)

1. Discard nodes that do not meet all prerequisites

2. Calculate scores for remaining scenes

(a) For each category, compute modifier value for
each state value and keep the maximum

(b) Sum the category modifiers

3. Make nodes with the highest priorities available to
players

4. Get input from player and present chosen scene node

5. Update the story state

Figure 2: Summary of the mechanics behind the
framework’s presentation and consumption of scene
nodes.

Progression through the story’s plot is governed by prereq-
uisites, especially game state and scene history. In cases
where the order of events matters, judicious use of prerequi-
sites can ensure that players do not visit kernels out of order.
For satellites, which generally do not advance the plot, fewer
global constraints are needed and we can make use of local
information to compute priority scores.

Once the prerequisites determine which nodes are poten-
tially available, the nodes’ priorities are calculated. Each
category of QSEs contributes one modifier to the final pri-
ority. The maximum score calculated within a category of
QSEs becomes that category’s modifier. If a QSE does not
appear in the scene state, it is considered to have a value of
zero. Within a category, an individual QSE’s value is the
product of the relevance in the scene state and the corre-
sponding desire in the story state. A QSE that has a high
relevance in a scene state as well as a high desire in the story
state will potentially lead to a larger modifier value for a
given category. This process is summarized in Equation 1:

P =
∑
C

max
QC

(dQ × rQ) , (1)

where P is the priority, C represents a set of categories, Qc

is the set of QSEs within category C, and dQ and rQ are the
desire and relevance for the QSE Q.

For example, in Figure 1, Scene 1 would have a score of
3*6=18 for the ‘finding bravery’ theme, while Scene 3 would
have 5*6=30 for the same element. The current desire to
see a scene reflecting the ‘finding bravery’ theme is strong,
and Scene 3 reflects that theme better, so Scene 3’s theme
modifier is higher. These scores are the maximum for the
theme and character categories, and thus become their mod-
ifiers. Scene 3 additionally features the hero character with
a high relevance value, making its character modifier high
as well. After summing the theme and character modifiers
together, Scene 3 will have the highest-priority of the three
scenes shown, which is desirable given the story state and
its need to show particular themes and characters.

Once the priorities for scene nodes have been calculated,
the top N nodes are made available to players. In addition,
if none of the top N nodes are kernels, we make the highest
priority kernel available as well, provided there is at least
one kernel that passes all prerequisites. How the choices are
illustrated depends on the game: in our case study below,

nodes are represented visually as clickable dots on a map.
Players should have a choice in which node they wish to con-
sume next, and they should be given some clues as to what
might happen if they were to choose a particular node. Al-
ternatively, node priorities can be used to choose the best
node for a forced encounter where players may not be given
a choice but rather have an event inflicted upon them. An-
other type of node might be always available to the player as
long as it passes its prerequisites and its priority surpasses
some threshold.

After a player chooses to consume a node, that node’s
scene is presented to the player by whatever means makes
sense in the game environment. In our case study, event
text is presented on the screen. In other games, conversa-
tions with non-player characters and other standard game-
play activities are among the possibilities. For some types
of games, game statistics may be altered while consuming
a scene, for example by shooting an alien fleet or solving a
puzzle, even if the story state is not affected. Such changes
in the game state may indirectly affect the story since pre-
requisites can be based on non-story game statistics. It is
important to note that once consumption of a node begins, a
player is committed to completing it and any challenges con-
tained within. A possible outcome of consuming the node
might be to exit early, but this must be explicit and is not
the default for all nodes.

One important aspect of our framework is the ability to
dynamically connect scene nodes to the overall story so far.
Strong stories have a web of interconnections. Events, char-
acters, and objects that are introduced at one point turn
out to be relevant again at a later point. Themes recur, and
resolutions echo other resolutions [11]. The use of QSEs in
calculating priorities for scenes helps ensure that elements
like characters and themes appear often enough. Further
connections can be added dynamically to the scene chosen
by the player. Our vision for how this can be accomplished
is discussed in Section 5.

Finally, after a node is consumed, its outcome must be
applied. For any scene, certain housekeeping changes have
to be made to the story state: the scene consumed must
be added to the ‘scenes seen’ list, and the story state’s de-
sire values need to increase according to their corresponding
rates. Once this is complete, the specific outcomes defined in
the scene are used to further adjust the story state. Usually,
values for QSEs are affected. For example, if a theme was
particularly relevant in the scene, then that theme’s desire
will decrease in the story state. In Figure 1, the desire for
the enemy character will decrease after Scene 2 is consumed.

3.3 User Interface Issues
Beyond the mechanical underpinnings of the framework,

there are several user interface issues to contend with. The
first is informing players that there is a scene node available
to consume. For our case study, available nodes are dis-
played explicitly as clickable circles on the screen. Red Dead
Redemption [18] did something similar in its 3D game envi-
ronment by displaying a stylized X in locations that trigger
a scene or quest to start. Design breakthroughs are likely
needed to solve this problem more than technical solutions,
partly because each game’s individual setting will dictate
what is and is not available for use.

After indicating that there is a node to be consumed, the
next challenge is giving players an idea of the kind of content

they can expect should they choose to consume it. It can
be very frustrating to trigger a scene only to find out that
you are embarking on a quest that you cannot quit and are
not yet ready for. In our case study, we display a short line
of ‘teaser text’ when hovering over a node to provide a hint
about what that node’s content is about. We consider this
an inelegant approach and hope to find a better one.

In addition to knowing what might happen when a node
is consumed, in most cases a player should have a choice in
whether or not they want to consume a node. (An exception
might be a forced encounter that forces a player to consume
an event.) Red Dead Redemption’s X accomplishes this, but
is not particularly elegant. It also blocks players from mov-
ing around a particular area since walking into the X will
always trigger an event. Can we avoid blocking a player this
way?

Finally, what is the best way to communicate the outcome
of a node to players? Relevant banter can be overheard by
the player, and statistics can be directly overlaid on the
screen (e.g. “Heroism + 4”). Fallout 3 ’s PIP-boy [2] pro-
vides a diegetic solution to displaying statistics on a device
the player character is carrying, but does not generalize to
other settings. The Outsider’s Heart in Dishonored [1] is an
example outside of a science fiction setting, but this tech-
nique will become stale if it becomes ubiquitous in games.
While we have implemented simple solutions to these issues
in our own case study, we consider them to be open problems
for our framework and beyond.

4. CASE STUDY
We based our game story on the Greek myth of Jason and

the Golden Fleece. We chose this story for several reasons.
It is a colorful story with many interesting events and char-
acters. It is structured as a quest, as are many games, so
lessons from this example will carry over to other game sto-
ries. It is broken up into many episodes, with many minor
occurrences that can be neglected in any particular telling,
so it fits naturally into our kernel-satellite model. Finally,
the events of the story are distributed through space, so plac-
ing events on the map is a natural way of communicating
options to the player.

Our version of Jason and the Golden Fleece is heavily in-
fluenced by Graves’s telling [9]. In the Greece of Graves, the
gods are a constant presence, and propitiating the gods is
one of the main tasks of the Argonauts. Graves’s Argonauts
are a quarrelsome lot, and one of Jason’s chief challenges is
enforcing order and settling their squabbles. There are also
external hazards, such as storms, disease, giants, unfriendly
locals, and the terrible clashing rocks called the Symple-
gades.

Jason is the nephew of Pelias, the king of Iolcos. Ja-
son is rightfully the king, but Pelias conceives a scheme to
rid himself of the troublemaker: he proposes that Jason
fetch the fabled Golden Fleece from the distant kingdom
of Colchis. Jason accepts the challenge and raises a crew
of heroes, the Argonauts, to sail the Argo to Colchis and
retrieve the Fleece. We take up the story as the Argo is
preparing to set sail from Iolcos. In the role of Jason, the
player must manage the happiness and health of the crew,
the favor of the gods, and win past the many dangers that
await on the long journey. In the complete story, Jason and
the Argonauts secure the fleece and return to Iolcos, accom-
panied by Medea, princess of Colchis. Medea tricks Pelias’s

Themes Characters
Heroism Argonauts Hermes

Treachery and honor Ephemus Zeus
Will of the gods Hercules Aphrodite

Atalanta Athena
Orpheus

Table 1: Modifier categories of quantifiable story
elements in the Jason and the Golden Fleece case
study.

Crew morale Ephemus Happiness Hermes Happiness
Jason’s Heroism Hercules Happiness Zeus Happiness

Tension Atalanta Happiness Aphrodite Happiness
Orpheus Happiness Athena Happiness

Table 2: QSEs not associated with a modifier cate-
gory.

daughters into killing him, whereupon Jason becomes king
of Iolcos.

Figure 3: A screenshot from the beginning of the
Jason and the Golden Fleece game prototype. The
player is contemplating setting sail.

Our game prototype currently covers the story from the
beginning of the journey to the passing of the Symplegades.
The player controls a ship indirectly by clicking on the next
location Jason and the Argonauts should travel to. A new
set of nodes appears on or below the map any time the ship
changes location or a node is consumed. Nodes below the
map are either not tied to a specific physical location or
represent events that occur when the ship is not sailing. Ta-
bles 1 and 2 summarize the quantifiable story elements used
in the game. Table 1 shows the two categories, themes and
characters, that are used in regular priority calculations. Ta-
ble 2 shows remaining QSEs not belonging to any category;
these are used for prerequisites, occasional forced encoun-
ters, and, in rare cases, adjusting priority calculations.

Currently, the four nodes with the highest priority are dis-
played. The number four has been chosen arbitrarily for this
prototype, but can easily be changed in code. We envision
more variability in the number of nodes available through-
out the game: when there are many good choices, we should

offer the player more, but at some points in the story the
player’s choices should narrow down to a fateful choice. The
player can hover over a node to get a clue as to what con-
tent they will encounter should they choose to consume that
node. To consume a node, a player simply clicks it. If the
node is below the map, it is consumed immediately; if it is on
the map, the ship must first sail to it, allowing opportunity
to cancel by sailing elsewhere or choosing another node.

We can see a snapshot of the early game in Figure 3. Some
satellites are available as the Argonauts prepare to set sail;
these introduce or reinforce the themes of the game, pro-
vide background and characterization of some of the Arg-
onauts, and allow the player to manage tradeoffs between
crew harmony, Jason’s heroism, and the favor of the gods.
For example, the Argonauts can prepare a sacrifice to Zeus,
increasing his favor, but incurring delay at which the Arg-
onauts chafe. Alternatively, in a scene adapted from Graves,
Jason can offer to renounce his captainship of the Argo in
favor of Hercules; this pleases the Argonauts, who resented
serving under the untried Jason. Hercules refuses to become
captain, warning Jason that he must take command of his
own destiny; this lightly touches on the recurring theme of
the nature of heroism. Each node visited will alter the story
state. Eventually the player will decide to set sail, activating
the first kernel and beginning the long journey to Colchis.

Figure 4: A screenshot from later on in the Jason
and the Golden Fleece game. The player is consider-
ing clicking on the node about King Phineas rather
than the neighboring node or nodes along the bot-
tom.

Later in the game, as the Argo enters the Marmara Sea,
we reach a critical period of the journey: the Argonauts ap-
proach the Symplegades, huge rocks that slam together to
crush passing ships. Various answers to the peril are avail-
able but must be found, for example, by winning the favor
of Athena, or by rescuing King Phineas from the harpies so
that he can tell them the secret of how to cross. The latter
was the solution adopted by the Argonauts of myth. Story
nodes are scattered along the coast of the Marmara Sea;
two are available, a visit to the realm of King Phineas and a
trip to the land of the Dolionians where the Argonauts can
participate in the violent and mirthful Dolionian Games.
In addition, there are many potential nodes not linked to
any particular location, including nodes relating to individ-

ual Argonauts, omens from the gods, and incidental hazards
such as storms. In the figure, nodes relating to the theme of
“treachery and honor” are available. The other themes have
played a part in recently encountered nodes, and hence the
story’s desire to revisit the other two themes is lower; nodes
about these themes, the individual heroes, and the gods will
become available in the future as those desires increase. The
Argo’s passage through the Symplegades is the next kernel,
but it is not available yet because none of its prerequisites
have been met.

As we develop the prototype further, we will incorporate
gameplay activities such as managing the contentedness of
the Argonauts and gods as well as maintaining a minimum
level of provisions. Gameplay choices made by players will
have both mechanical consequences (the ship will sail more
slowly) and story consequences (the player may be forced to
seek out scene nodes that allow them to re-provision to avoid
the ship sinking). It is important to us that gameplay and
story are tightly intertwined, with one affecting the other.
Game statistics will affect what nodes are prioritized, and
the nodes chosen by the player will in turn affect the game
statistics.

5. VISION
The system as presently conceived already supports the

typical questing story model of current open-world CRPGs:
a quest would be a satellite node, or a series of nodes with
prerequisites, and the ‘main story’ plotline would be a series
of kernels. Branching based on story parameters, such as
the Paragon/Renegade meters in the Mass Effect series, or
Karma in the Fallout series, is also possible.

However, while traditional quest structures do little to en-
force the overall unity of the story, our framework encour-
ages authors to consider how each quest ties into broader
themes and other story elements and to explicitly tag the
nodes according to which story elements are served. By
making nodes available according to the need to reinforce
specific quantifiable story elements, as controlled by the rate
parameters associated with each element, we can ensure that
no element is neglected and a sensible global balance is main-
tained. If it has been some time since the character Orpheus
was visible in the story, nodes involving Orpheus will become
more prominent. We hope writers will be encouraged to look
for opportunities to reflect story elements in the scene nodes,
enriching the story without mechanics.

In addition, our framework allows authors to control the
story’s progression. Prerequisites can be used to ensure that
kernel nodes become available only when appropriate. Pre-
requisites could be based on the history of the story or on
game statistics such as items obtained, battles fought, and
goals accomplished. Prerequisites might also dictate that a
kernel becomes available after a certain number of satellites
have been seen, and measures of tension can help ensure an
effective interest curve (as described by Schell [19]) is main-
tained. Spatial barriers can be used either in a literal way
within the game world, or again as prerequisites for kernels.
The player’s proximity to a node’s location would factor into
that node’s availability. Distance might be measured as the
crow flies, or at a more conceptual level, say distance mea-
sured in train stops.

Large games are created by large teams of people working
together. Managing large coherent stories is difficult, but
breaking it down into individual kernels and satellites will

ameliorate the difficulties. Designers can reason about a sin-
gle node and decide under what conditions the node should
be available.

In the future, we envision even more dynamic changes to
the storyline by making slight adjustments to the content
of a node depending on the story state. As mentioned in
Section 3.2, we hope to make connections to prior player
decisions through subtle changes to the scene, for example,
using visual motifs and banters, changing the lighting, and
adjusting the timing of dialogue. The player’s earlier refusal
to help Baron Wulfston could be echoed in the story’s con-
clusion by having the camera linger on the baron’s empty
chair. Visual motifs already present in the scenes could
be opportunistically emphasized as the emerging story war-
rants. Even if many players fail to pick up on these nu-
ances, there would be a sense of significance heightening the
tension; there would also be something to reward more ob-
servant players. Also, the more interconnections that are
included, the greater the chance that at least some of them
would be noticed. The ideas behind Spierling et al.’s char-
acter conversation and actor avatar engines [21] may also
be used in conjunction with the discussed dynamic changes
to produce a strong set of believable characters that react
appropriately to the story’s history. The character conver-
sation engine ensures that “characters act according to their
personality traits, social roles and relationships,” giving the
opportunity to have characters act according to story state.
The actor avatar engine takes care of animation; its level of
autonomy determines how well the output reacts to the cur-
rent story context. Here, the visuals rather than character
decisions can reflect the story state.

As well as deliberately authoring connections between story
elements, repetition of motifs and themes throughout the
game will result in serendipitous linkages within any partic-
ular play-through. By strengthening the fabric of the story
and revisiting the same themes many times, patterns will
emerge, recognizable by the player. A story, in a game or
otherwise, comes alive most strongly when it is able to en-
list the imagination of the audience to flesh out details not
explicitly presented. Ultimately, we would want to make it
possible for the player to communicate these observations
back to the game, so they can then be further elaborated
in later play; as yet we do not have concrete notions of how
this might be achieved, but our vision includes the player as
an author, not only controlling an avatar in the game, but
making suggestions about the nature of the story itself.

It is worth noting that when we talk about using our
framework to prioritize nodes that feature characters not
reinforced recently, we are referring to characters whose at-
tributes have already been set by a designer. Many roleplay-
ing games give players a blank slate for their characters, al-
lowing them to fill in the details as they play. In these types
of games, other non-player characters can still be revealed
and reinforced periodically with our framework. Even if the
player character begins as a blank slate, we envision lock-
ing the player into a certain path when they choose enough
nodes that reflect a particular character trait. For exam-
ple, if someone playing as a princess chooses enough violent
nodes she will no longer be able to dissolve the threat to the
kingdom through peaceful measures.

Although we have proposed a particular scoring method
for calculating priorities, more testing is needed. An open
question is whether our simple approach will be sufficient.

Currently, we use a greedy approach; use of heuristics or
global optimization may be more effective. In addition, ex-
perimentation with the desirability rate is required. Presently
fixed, it might make sense to make the rate variable. The
changes to the desirability rate can be connected to the out-
come of another story node or physical location. For ex-
ample, the theme of fire and ash should perhaps be more
prominent if the player enters Mordor, while hopefulness
might not be featured at all. Or perhaps after the prince’s
death, he is revealed to be a betrayer, causing the betrayal
theme’s rate to increase dramatically.

6. CONCLUSION
We have introduced a framework for coherent emergent

stories and explored an implementation in a case study based
on the story of Jason and the Golden Fleece. Our frame-
work, based on the idea of rigid kernels and flexible satellites,
uses a prerequisite and story-based priority system to ensure
that scenes offered to players make sense both in terms of
the story’s progression and the player’s gameplay history.
Our prototype game allows players to bring Jason and his
crew to the Symplegades in a flexible manner; we will con-
tinue to flesh out the story and further explore the theme of
honor and treachery with Medea’s story on the return voy-
age. We hope that with frameworks like ours, designers will
be better able to create dramatically compelling stories for
games that are coherent but still incorporate player actions
and choices.

7. REFERENCES
[1] Arkane Studios. Dishonored (PlayStation 3), October

2012. Bethesda Softworks.

[2] Bethesda Game Studios. Fallout 3 (Windows), 2008.
Bethesda Softworks.

[3] David Bordwell and Kristin Thompson. Film Art: An
Introduction. McGraw-Hill Humanities/Social
Sciences/Languages, 10 edition, 2012.

[4] Selmer Bringsjord. Is it possible to build dramatically
compelling interactive digital entertainment (in the
form, e.g., of computer games)? Game Studies, 1(1),
2001.

[5] Seymour Chatman. Story and Discourse: Narrative
Structure in Fiction and Film. Cornell University
Press, 1980.

[6] Steven Cohan and Linda M. Shires. Telling Stories: A
Theoretical Analysis of Narrative Fiction. Routledge,
1988.

[7] Greg Costikyan. Games, storytelling, and breaking the
string. Electronic Book Review, 2007.

[8] Thiago R. Dória, Angelo E.M. Ciarlini, and Alexandre
Andreatta. A nondeterministic model for controlling
the dramatization of interactive stories. In Proceedings
of the 2Nd ACM International Workshop on Story
Representation, Mechanism and Context, SRMC ’08,
pages 21–26, New York, NY, USA, 2008. ACM.

[9] Robert Graves. The golden fleece. Cassell and
company ltd, 1944.

[10] Barry Ip. Narrative structures in computer and video
games: Part 1: Context, definitions, and initial
findings. Games and Culture, 6(2):103–134, 2011.

[11] Keith Johnstone. Impro: Improvisation and the
Theatre. Routledge, 1987.

[12] Craig Lindley. Developing Interactive Narrative
Content: sagas/sagasnet reader, chapter Story and
Narrative Structures in Computer Games. High Text
Verlag, 2005.

[13] Bride Mallon and Brian Webb. Stand up and take
your place: identifying narrative elements in narrative
adventure and role-play games. Computers in
Entertainment (CIE), 3:1–20, 2005.

[14] Michael Mateas and Andrew Stern. Structuring
content in the facade interactive drama architecture.
In Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE 2005), 2005.

[15] Josh McCoy, Mike Treanor, Ben Samuel, Aaron A.
Reed, Michael Mateas, and Noah Wardrip-Fruin.
Prom week: Designing past the game/story dilemma.
In Proceedings of Foundations of Digital Games 2013,
2013.

[16] Bradford W. Mott and James C. Lester. U-director: A
decision-theoretic narrative planning architecture for
storytelling environments. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, pages 977–984,
New York, NY, USA, 2006. ACM.

[17] Mark O. Riedl and Andrew Stern. Believable agents
and intelligent story adaptation for interactive
storytelling. In Stefan Göbel, Rainer Malkewitz, and
Ido Iurgel, editors, Technologies for Interactive Digital
Storytelling and Entertainment, volume 4326 of
Lecture Notes in Computer Science, pages 1–12.
Springer Berlin Heidelberg, 2006.

[18] Rockstar San Diego. Red Dead Redemption (Xbox),
May 2010. Rockstar Games.

[19] Jesse Schell. The Art of Game Design: A book of
lenses. Morgan Kaufmann, 2008.

[20] Matthew Shelley. On the feasibility of using use case
maps for the prevention of sequence breaking in video
games. Master’s thesis, Carleton University, 2013.

[21] Ulrike Spierling, Dieter Grasbon, Norbert Braun, and
Ido Iurgel. Setting the scene: playing digital director
in interactive storytelling and creation. Computers &
Graphics, 26(1):31 – 44, 2002.

[22] Anne Sullivan. The Grail Framework: Making Stories
Playable on Three Levels in CRPGs. PhD thesis,
University of California Santa Cruz, 2012.

[23] Ivo Martinus Theodorus Swartjes. Whose story is it
anyway? : How improv informs agency and authorship
of emergent narrative. PhD thesis, University of
Twente, 2010.

[24] David Thue, Vadim Bulitko, Marcia Spetch, and
Trevon Romanuik. A computational model of
perceived agency in video games. In Proceedings of the
Seventh AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2011.

[25] David Thue, Vadim Bulitko, Marcia Spetch, and Eric
Wasylishen. Interactive storytelling: A player
modelling approach. In The Third Conference on
Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2007.

