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Fig. 1. Given an object in isolation (let of each example), our generative network synthesizes scenes that demonstrate the functionality of the object in terms

of interactions with surrounding objects (middle). Note the diferent types of functionalities appearing in the scenes generated by the network, involving

interactions such as support, containment, and grasping. The scene is refined by replacing voxelized objects with higher resolution models (right).

Humans can predict the functionality of an object evenwithout any surround-

ings, since their knowledge and experience would allow them to łhallucinatež

the interaction or usage scenarios involving the object. We develop predictive

and generative deep convolutional neural networks to replicate this feat.

Speciically, our work focuses on functionalities of man-made 3D objects

characterized by human-object or object-object interactions. Our networks

are trained on a database of scene contexts, called interaction contexts, each

consisting of a central object and one or more surrounding objects, that

represent object functionalities. Given a 3D object in isolation, our functional

similarity network (fSIM-NET), a variation of the triplet network, is trained

to predict the functionality of the object by inferring functionality-revealing

interaction contexts. fSIM-NET is complemented by a generative network

(iGEN-NET) and a segmentation network (iSEG-NET). iGEN-NET takes a
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single voxelized 3D object with a functionality label and synthesizes a vox-

elized surround, i.e., the interaction context which visually demonstrates

the corresponding functionality. iSEG-NET further separates the interacting

objects into diferent groups according to their interaction types.
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1 INTRODUCTION

In recent years, functionality analysis of 3D shapes has gained at-

tention as a means to understand and manipulate 3D environments.

It has been argued that the recognition and categorization of ob-

ject and scene data are mainly based on their functionality [Greene

et al. 2016; Stark and Bowyer 1991]. Even though functionalities

of objects can be interpreted in many ways, most of them involve

some form of interactions between two entities: one that provides

the functionality and one that łconsumesž it.

Humans can predict the functionality of an object even without

any surroundings, since their knowledge and experience would

allow them to łhallucinatež the interaction or usage scenarios in-

volving the object. The main question we pose is whether a machine
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can replicate this feat, i.e., to predict the functionality of a 3D object

given in isolation, possibly through an łinteraction hallucinationž,

and then be generative, i.e., to synthesize interactions that relect

the object’s one or more functionalities (see Figure 1).

Our work focuses on functionalities of man-made objects that

are characterized by human-object interactions (e.g., sitting on a

chair or pushing a cart) or inter-object interactions (e.g., chairs next

to a table or books on a shelf ). The functionalities of an object can

be revealed by a 3D scene that contains the object, designated as

the central object, and one or more objects around it. These objects

form a scene context within which one can study the central object’s

functionalities. It is the interactions between the central object and

its surrounding objects that deine the functionalities. Similar to

[Hu et al. 2015], we call the scene context an interaction context. To

learn object functionalities, we take a data-driven approach and use

a scene dataset, i.e., a set of interaction contexts.

Given an input 3D object in isolation, our goal is to train a model

to infer interactions involving the object which reveal its functional-

ities, by learning from our scene dataset. We consider the inference

task to have two facets: prediction and synthesis.

(1) In prediction, the key challenge is to learn a space of inter-

action contexts deined by functional similarities. Since we

must deal with both isolated objects and scene data, we de-

ine the space of interaction contexts as a latent feature-space

to which we map both objects and scenes. An isolated 3D

object is mapped to a distribution over this space, allowing

us to obtain interaction contexts which can help predict the

object’s multi-functionalities.

(2) In synthesis, we introduce a new problem to functionality

analysis: to train a generative model which takes a single

3D object with a functionality label as input and produces

surrounding objects, i.e., the interaction context which reveals

the corresponding functionality.

Deining functional similarity between objects or scenes is chal-

lenging since shape similarity does not suice. Previous works on

functionality analysis [Hu et al. 2016; Pirk et al. 2017; Savva et al.

2016] rely on specialized and hand-designed features such as bisec-

tor surfaces or RAID [Guerrero et al. 2016; Hu et al. 2015; Zhao et al.

2014]. In contrast, our work learns the interaction context space

via metric learning based on a novel artiicial neural network: the

functional similarity network, which we refer to as fSIM-NET.

Our fSIM-NET is a variation of the triplet network [Wang et al.

2014], so that it becomes łcross-domainž. Speciically, each triplet

input to the network consists of one 3D object in isolation, and two

scene instances: one interaction context that positively relects the

functionality of the object and one negative interaction context. The

fSIM-NET learns a mapping of the inputs to the latent feature space

based on functional similarity. It is trained by a novel triplet loss

which pushes the mappings of the 3D object close to that of the

positive scene instance but away from the negative one.

For synthesis, we irst introduce a generative network, coined

iGEN-NET, which synthesizes an interaction context for a single

input 3D object. Hence, after predicting functionality with the fSIM-

NET, we can demonstrate it through a visual example. Note that

an object-to-scene retrieval will not work for synthesizing such a

scene, since the input object may be geometrically quite diferent

from the central objects that exist in the training data. Lastly, we

introduce a segmentation network, iSEG-NET, which takes the output

synthesized by iGEN-NET and separates the interacting objects into

diferent groups according to their interaction types.

Contributions. To the best of our knowledge, our work develops

the irst deep neural network for functionality analysis of 3D ob-

jects. The key is to infer object functionalities by learning functional

similarities via a novel triplet network and predicting interaction

contexts for a single 3D object without relying on handcrafted fea-

tures. The similarity network is complemented by a synthesis net-

work, followed by a segmentation network, to produce interaction

contexts with segmented objects. The synthesis phase goes beyond

inferring functionality labels or classes, it substantiates the acquired

functional understanding. In conjunction, fSIM-NET, iGEN-NET,

and iSEG-NET constitute an advanced framework for data-driven

functional analysis of 3D objects; see Figure 2.

Our functional analysis framework consists of three separate, but

streamlined, networks rather than a single uniied network. This

facilitates preparation of training data and training of the networks.

Speciically, the networks can be trained with example scenes that

demonstrate a single functionality of each object, while the predic-

tion and generation can involve multiple functionalities of an object.

The training of each network can be performed with loss func-

tions targeted at subproblems of the framework and each individual

network can be applied to serve diferent analysis tasks.

The three networks fSIM-NET, iGEN-NET, and iSEG-NET enable

several applications, such as scene/object retrieval and object clas-

siication based on functionality, embedding of scenes and objects

by a measure of functional similarity, and synthesis of interaction

context scenes for individual objects. We also demonstrate in our

evaluation that the similarity network provides a more accurate

description of functionality when compared to previous work using

hand-crafted descriptors [Hu et al. 2016, 2015].

2 RELATED WORK

Structural analysis of shapes. Part structures of shapes and func-

tionality are intricately connected. Earlier works describe models of

part structures that shapes with prescribed functionalities should

possess. Such models can be manually deined [Stark and Bowyer

1991] or partially learned from image data [Pechuk et al. 2008].

Structure-aware shape analyses indirectly discover functionalities

by analyzing the shape of and relationships between shape parts [Mi-

tra et al. 2013], such as symmetry [Wang et al. 2011] and certain

special support relations [Zheng et al. 2013].

Afordance analysis. Many works in computer graphics and vi-

sion analyze human-to-object interactions with the simulation of

humanoid agents, to characterize object afordance. Grabner et

al. [2011] explore the speciic case of objects that can function as

chairs, while more recent works are able to analyze a larger variety

of humanoid interactions and object afordances [Jiang et al. 2013;

Kim et al. 2014;Wang et al. 2017; Zhu et al. 2014, 2015]. Going beyond

the simulation of human poses, Savva et al. [2014] track real human

movements to learn action maps of scenes, encoding regions of an

environment that can be used to perform certain tasks. Aside from
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Fig. 2. Our complete framework for understanding object functionality using deep neural networks: Given a 3D object in isolation (a), we first transform

it into a voxel representation (b). Then, we retrieve scenes with functionality most similar to that of the object (c), using our functional similarity network

fSIM-NET. These retrieved scenes reveal functionalities in the form of interactions of the central object with surrounding objects, with associated functionality

labels, e.g., łHandcartž. Given such a functionality label from fSIM-NET, we can synthesize an interaction context (d) for the given 3D object (b) using our

generative network iGEN-NET. Finally, we partition the interaction context into individual objects (e) using our segmentation network iSEG-NET, to enable

further processing and analysis of the scene, such as replacing voxels with higher-resolution 3D models (f).

object afordance, many functionalities also involve more general

object-to-object interactions, which cannot be directly accounted

for by human-object interactions.

Encoding object-object interactions. To analyze object function-

alities involving inter-object interactions, Zhao et al. [2014] intro-

duce the Interaction Bisector Surface (IBS), which is a subset of the

Voronoi diagram that encodes the space between any number of

objects. Hu et al. [2015] combine IBS with interaction regions into

a hierarchical representation to constitute ICON, a geometric de-

scriptor of interaction contexts. In subsequent work, Hu et al. [2016]

extend the ICON descriptor into a full model of functionality, which

can be used to predict the functionality of a shape given in isolation.

The key limitation of these approaches is that the IBS and ICON

descriptors are handcrafted encodings of interactions, using speciic

geometric constructions which may not encode all relevant infor-

mation to describe 3D object functionalities. In contrast, our work

introduces a data-driven approach for constructing such descriptors.

We learn a feature encoding of object functionality using a con-

volutional neural network that maps voxelized objects to a latent

space of interactions. Our cross-domain triplet network generalizes

previous approaches to functionality analysis [Hu et al. 2016, 2015;

Zhao et al. 2014] since it can measure functional similarities be-

tween scenes, and between objects and scenes, and it can predict the

functionality of a 3D object given in isolation. Moreover, none of the

previous works considered the problem of synthesizing contextual

scenes of functional interactions from a single object.

Interaction context vs. ICON. In both the work of Hu et al. [2015]

and ours, an interaction context is a 3D scene consisting of a central

object and surrounding objects. However, the acronym ICON of Hu

et al. [2015] denotes a speciic descriptor of interaction contexts,

deined by handcrafted features. In ourwork, the features are learned

by a neural network. Throughout the paper, ICON is reserved to

refer to the descriptor of Hu et al. [2015], while the term interaction

context will be used as a generic reference to scene contexts.

Scene synthesis. Another line of work has focused on the gener-

ation of 3D indoor scenes. Fisher et al. [2012] learn a probabilistic

model of object occurrence and arrangement from scene exemplars

and Zhao et al. [2016] learn relationship templates for scene syn-

thesis. More recent works consider interactions or human activities

for the task. Savva et al. [2016] learn a probabilistic model of hu-

man poses and spatial object conigurations and apply the model

to synthesize interaction snapshots. Ma et al. [2016] learn a binding

between human actions and object co-occurrences and placements

from annotated images for action-driven 3D scene evolution. Fu et

al [2017] capture object arrangements and human activities with

activity graphs learned from 2D loor plans and human positions.

Diferently from these works, we generate scenes with a deep neu-

ral network composed of mapping and decoder subnetworks. The

relations between objects that are important for enabling certain

functionalities are learned by the network directly from example

scenes, and not handcrafted as in these works.

The interaction snapshots generated by Savva et al. [2016] bear

some resemblance to interaction contexts. An interaction snapshot

consists of a human activity pose and one or more objects relevant

to the activity (e.g., TV and sofa for watching TV). Their interaction

snapshots are always human-centric, while our interaction contexts

are more general. The most important distinction however, is that

the inputs to their snapshot generation are terse yet explicit de-

scriptions of one or more human activities in the form of verb-noun

pairs, e.g., sit-chair+ use-laptop. In contrast, our generative network

takes a single 3D object and synthesizes its surroundings based on

a functionality label predicted by fSIM-NET.

Neural networks for shape analysis and synthesis. Recently, re-

search in deep neural networks has advanced signiicantly. In shape

analysis, a few works learn a mapping from a high-dimensional

volumetric grid into a lower-dimensional latent space, which can

be sampled to synthesize new shapes [Girdhar et al. 2016; Wu et al.

2016, 2015]. Other works represent shapes as multi-view depth scans

and learn a regression network for 3D shape completion [Han et al.

2017]. Alternative representations also include point sets [Qi et al.

2017], processing directly on manifolds [Masci et al. 2015], or a

hierarchical representation suitable for the analysis and synthesis

of man-made shapes [Li et al. 2017]. In our work, we also represent

shapes and scenes as voxels, and develop the irst predictive and

generative convolutional neural networks for object functionality.

Triplet networks [Wang et al. 2014] are designed to ofer distance

metrics by learning an embedding function. In the classical setting,

all three inputs to the network belong to the same domain, while in

fSIM-NET we compare two diferent representations: objects and

scenes. Sung et al. [2017] introduce a network for suggesting parts

in model assembly, where retrieval and embedding subnetworks

map parts and a partially-assembled model to a common space. By
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modeling part predictions as a probability distribution, their method

can suggest multiple plausible parts for assembly. Similarly to this

work, we also use subnetworks to map diferent representations

to the same space, and model the prediction of functionality as a

probability distribution. However, we address a completely diferent

problem involving functionalities of objects and scenes, and model

them as 3D volumes rather than point clouds.

3 OVERVIEW

The input and output of our analysis are 3D objects and scenes (Fig-

ure 2). To use CNNs, we represent both objects and scene contexts

by a cube of 643 voxels. For individual objects, each voxel stores a

binary value indicating whether the voxel is occupied by the object

or not. For scenes, each voxel has three channels, where each chan-

nel holds a binary value indicating whether the voxel belongs to

the central object, to an interacting object, or is empty.

To learn our latent feature space for both objects and scenes,

we design the fSIM-NET as a cross-domain triplet network. Each

triplet to the network consists of a reference, which is a single 3D

object, one positive example, which is a scene context that positively

relects the functionality of the object, and one negative example,

which is a random scene context that is functionally dissimilar to

the positive scene instances. The loss function of the network keeps

a margin between two distances: the distance from the reference to

the positive interaction context, and the distance from the reference

to the negative interaction context. The fSIM-NET learns a mapping

of all three inputs to the latent space of interaction contexts (see

Figure 3). However, we cannot use the samemapping for both objects

and scenes. Instead, we learn two mappings: one maps scenes to the

interaction context space, and the other maps an isolated object to

a distribution over the same space. The distribution allows mapping

one object tomultiple regions in the space which may correspond to

diferent functionalities exhibited by the same object (e.g., a wheeled

chair can be sit on or pushed like a cart).

The object-to-interaction mapping by fSIM-NET is an essential

starting point for understanding object functionalities. In the syn-

thesis phase, we develop two additional networks to complement

the functionality prediction network. In iGEN-NET, a generative

convolution neural network, we take as input a 3D object in isola-

tion in conjunction with a functionality label inferred for the object

using fSIM-NET. The output of the network is a voxelized 3D scene,

i.e., an interaction context, which surrounds the input object with

one or more objects to visually demonstrate the input functionality.

The iGEN-NET is a combination of an embedding network with a

decoder and spatial transformer network, which synthesizes a scene

and properly places the input 3D object into the scene. In contrast

to previous indoor scene synthesis works [Fisher et al. 2012; Fu et al.

2017; Ma et al. 2016; Savva et al. 2016], our network discovers the

important shape features that reveal the interactions of the objects

during the learning, rather than relying on handcrafted descriptors.

Lastly, the segmentation network, iSEG-NET, takes the output

synthesized by iGEN-NET and separates the interacting objects

into diferent groups according to their interaction types, enabling

further analysis or post-processing of the objects, the scene, and the
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Fig. 3. The architecture of our functional similarity network ś fSIM-NET.

The layers shown on the top row implement the Eobj subnetwork, while the

layers on the second and third rows implement the Escn subnetworks. We

show over each volume the number of units of the same type that appear

in the layer, while the dimensions of the data processed by each layer are

writen under the volume.

interactions involved. The iSEG-NET is an encoder/decoder network

that provides a labeling of the synthesized scene.

4 FSIM-NET: FUNCTIONAL SIMILARITY NETWORK

Our goal is to learn a distance metric D (x ,Y ) that reveals the dis-

similarity between the functionality of an object x given in isolation,

and a central object provided with surrounding objects in a scene Y .

The metric should enact the dissimilarity between the interactions

that x supports and the ones appearing in Y . In practice, to obtain

this metric, we map objects and scenes to the space of interactions,

and measure distances in this space. Thus, we reformulate our goal

as learning two mapping functions: Eobj for individual objects and

Escn for scenes. Then, we can deineD (x ,Y ) = ∥Eobj (x )−Escn (Y )∥2.

The mapping functions should satisfy the requirement that scenes

with similar interactions are close to each other in the mapping

space, while scenes that support diferent interactions are far apart.

Similarly to previous works [Lun et al. 2015; Wang et al. 2014],

we learn the mapping functions from triplets that provide example

instances of the metric. Speciically, our training set T is composed

of triplets of the form (xi ,Y
+

i ,Y
−
i ), where xi is an object given in

isolation, Y+i is a positive example scene (a scene displaying the

same functionality as xi ), and Y
−
i is a negative example scene (not

displaying the same functionality as xi ). Learning a meaningful

metric can then be posed as learning Eobj and Escn so that ∥Eobj (xi )−

Escn (Y
+

i )∥ < ∥Eobj (xi ) − Escn (Y
−
i )∥ for all triplets in T . We learn

the two mappings Eobj and Escn with a single neural network.

Network architecture. We modify the original architecture of a

triplet network to map diferent domains into the latent space. Our

network is composed of three subnetworks, as illustrated in Figure 3.

The network takes as input one object and two scenes represented

as 3D volumes composed of 643 voxels. Two subnetworks imple-

ment Escn for the input scenes, while one additional subnetwork
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implements Eobj for isolated objects. The subnetworks map their

inputs to the interaction space, by converting the 3D volumes into

feature vectors. The types and numbers of units that we use in each

layer of the subnetwork are listed in the supplementary material.

Each Escn subnetwork is implemented with convolutional layers

that map an input scene Y into a 64-dimensional vector fY , rep-

resenting the coordinates of the central object of the scene in the

interaction context space. The two Escn subnetworks share parame-

ters as they compute the same function.

The Eobj subnetwork maps an isolated object to the interaction

context space. If every object in the world had a single functionality,

then the mapping could be modeled as a straightforward one-to-

one embedding. However, in practice, an object can serve multiple

functionalities, and often there is correlation in the functionality of

distinct object categories [Hu et al. 2016]. Thus, inspired by the work

of Sung et al. [2017] on shape completion, we learn a probabilistic

mapping to the latent space using a Gaussian Mixture Model (GMM).

Using a GMM, we can compute the expectation that an input object

x functions as represented by a scene Y :

E (x ,Y ) = − log

N∑

k=1

ϕk (x ) p ( fY |µk (x ),σk (x )), (1)

where fY is the mapping of Y computed with Escn, p is modeled as a

Gaussian distribution, N is the number of components in the GMM,

and {ϕk , µk ,σk } are the parameters of the k-th Gaussian in the

model: component weights, mean, and variance, respectively. Note

that these parameters are functions learned by the Eobj subnetwork,

which implement a probabilistic version of the mapping function

Eobj. The Eobj subnetwork is implemented with convolutional layers

attached to a inal layer that provides the parameters of the GMM

(details provided in the supplementary material).

Training the network. The training consists of optimizing the

parameters of the subnetworks to minimize a contrastive loss on

the training triplets T . The loss is similar in spirit to that of Wang

et al. [2014] and Sung et al. [2017], but considers the mapping for

two diferent domains as captured by the expectation E in Eq. 1:

L(T ) =
1

n

n∑

i=1

L(xi ,Y
+

i ,Y
−
i ), with (2)

L(x ,Y+,Y−) = max{0,m + E (x ,Y+) − E (x ,Y−)}, (3)

where n = |T | is the number of triplets, andm is a gap parameter

that helps control the convergence of the optimization. If the difer-

ence between the negative expectation and positive expectation is

less thanm, then the triplet contributes to the gradient when opti-

mizing the network parameters. Otherwise, if the gap is satisied, no

contribution is incurred by the triplet. The loss ensures that objects

with similar functionality are kept close in the mapping space, and

those with dissimilar functionality are kept apart. The network is

trained with the Adam optimizer, where all the subnetworks are

trained together with the loss in Eq. 2.

Functionality predictions. Once the network is trained, we can

use the Eobj and Escn subnetworks to predict various functionalities.

We can compute functional diferences between two scenes Y1,Y2
as ∥Escn (Y1) − Escn (Y2)∥2, and between two objects x1,x2 as some
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Fig. 4. Architecture of the fSIM-NET for learning the metric in the scene-to-

object direction, composed of two Eobj and one Escn subnetworks.

PDF diference between Eobj (x1) and Eobj (x2). However, we can also

compute E (x ,Y ) to estimate the distance of any input object x to

a scene Y in the training data, which allows us to predict the most

probable functionalities of a given object x .

Scene-to-object distance. Through its training procedure, fSIM-

NET learns a metric optimized for the object-to-scene direction. That

is, using the latent space learned, the distances from an object x

to two scenes Yi and Yj are comparable, since the triplets used for

training constrain such relative comparisons. However, the metric

is not explicitly optimized for the scene-to-object direction. That

is, given two objects xi and x j , their distances to a scene Y are

not necessarily comparable. Such comparisons can be used to ind

objects that best support a given functionality Y , for example, if we

want to replace the central object in the scene Y with a diferent

object x that fulills the same functionality as the central object.

However, using the same ideas as in the fSIM-NET, we can build

a network composed of two Eobj (that share parameters) and one

Escn subnetworks, to obtain a metric in the scene-to-object direction

(Figure 4). To train the network, we require a set of suitable triplets

T ′ which include distances involving one scene Y and two objects

x+, with the same, and x−, with diferent, functionality as the central

object in Y . Then, our goal can be posed as learning Eobj and Escn so

that ∥Eobj (x
+)−Escn (Y )∥ < ∥Eobj (x

−)−Escn (Y )∥, for all the triplets

in T ′. The new network is then trained with a loss similar to Eq. 3,

adapted to T ′:

L(x+,x−,Y ) = max{0,m + E (x+,Y ) − E (x−,Y )}, (4)

where the expectations are computed with the GMMs learned by

each Eobj subnetwork and the Escn subnetwork.

Classiication networks. Our network architectures can be adapted

speciically for classiication purposes. These can be used in appli-

cations where we are interested in classifying an input object or

scene into one or more functionality categories. In this context,

the training triplets are provided with classiication labels of the

functionality category of both objects and scenes. To create a clas-

siication network for the object-to-scene direction, we add two
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Fig. 5. The architecture of our interaction context generation network ś iGEN-NET. Given an input object x (top-let) and functionality label c (botom-let),

the network generates an output scene X and places x into this scene (right), based on transformation parameters s and t .

fully-connected layers at the end of the Eobj subnetwork, and learn

a function L(x ) that translates the output parameters of the GMM

into class probabilities. Similarly, to perform classiication in the

scene-to-object direction, we add two fully-connected layers at the

end of a Escn subnetwork, and learn a labeling function L(Y ).

5 IGEN-NET: CONTEXT GENERATION NETWORK

Going beyond inferring or classifying functionality, we introduce

iGEN-NET, which is a network capable of generating a context scene

for an object given in isolation. The synthesized scene is composed

of objects interacting with the input object in ways that demonstrate

its functionality. The network takes as input an individual voxelized

object x and a functionality label c represented as a one-hot vector,

and outputs a voxelized scene Y . The label can be predeined or

selected among the high probability labels predicted by classifying

x as described in the previous section. Although objects can support

more than one functionality, by providing a single label as input,

we deine the speciic functionality that we wish to illustrate within

the scene Y generated by iGEN-NET.

The interaction context generation is accomplished with three

subnetworks, as shown in Figure 5. The object is irst embedded

into a feature space with the use of a convolutional subnetwork,

providing a 128-dimensional embedding vector ex for the object.

Fully-connected layers combine the object’s embedding vector ex
and functionality label c to provide a 256-dimensional feature vector.

Lastly, a decoder subnetwork takes this feature vector as input and

synthesizes the output interaction context scene. In parallel, a spatial

transformer network [Jaderberg et al. 2015] composed of a few fully-

connected layers takes as input the same feature vector and deines

the scaling and translation needed to place the input object x into the

scene. Detailed information regarding the layers of each subnetwork

is given in the supplementary material.

By combining the output of the synthesis and placement sub-

networks, we obtain a complete scene Y with the input object x

placed in the appropriate location, and synthesized objects as the

interaction context for the central object x . As we show in Section 7,

by varying the input label c , we are able to generate various scenes

that illustrate diferent functionalities of the same object.

To train the network, we provide examples of voxelized scenes

with a central object and multiple interacting objects, together with

the functionality label. We deine two loss functions: the loss func-

tion for the synthesis subnetwork is the mean of the voxel-wise

cross-entropy between the training and synthesized interaction

contexts (not including the central object), while the loss for the

placement subnetwork is the sum of the L2 norms for the scaling val-

ues and translation vectors of the central object between the training

and synthesized scenes. We irst train the placement subnetwork

alone. Then, we ix the parameters of this subnetwork and train the

synthesis subnetwork with the voxel cross-entropy loss [Girdhar

et al. 2016]. Finally, we ine-tune the entire network with a loss

function that is the sum of the two losses of the subnetworks.

6 ISEG-NET: SEGMENTATION NETWORK

The output of the generation network is a voxelized scene including

voxels of three types: the central object, context, and empty voxels.

The goal of iSEG-NET is to separate the context voxels into objects

with diferent interaction types with the central object. Assuming

that there are M diferent types of interactions involved in our

dataset (e.g., chairs are placed next to a table, and books on top of

a table), we use the network to ind the probability of each of the

context voxels to be labeled as one theM possible interactions.

The network takes as input a context scene, that includes only

the context and empty voxels of the output of iGEN-NET, and out-

puts a vector of size M of probabilities p
j
i
for every voxel j in the

context voxels, where p
j
i
is the probability of voxel j being labeled

as interaction type i . Similarly to iGEN-NET, the network is com-

posed of encoder and decoder convolutional subnetworks with skip

connections, illustrated in Figure 6. The encoder reduces the input

volume into a 128-dimensional feature vector, which is concatenated

with the output of fully-connected layers that process the label of

the scene. The concatenated feature vector is further processed and

decoded to yield a volume with the probability of the context voxels.

To train the network, we prepare training data by labeling each

scene with the interaction type of each interacting object. In our

work, we consider M = 18 interaction labels, which represent all

the interaction types that we observed in our dataset. These include

interactions such as supported, supporting, sitting, riding, hanging,

and typing, etc. The loss function for the segmentation network is

deined as the mean of the voxel-wise cross-entropy between the

ground-truth and predicted labeling.

To create the inal segmentation, we can simply take the max-

imum of the probabilities of each voxel. However, the generated

results in this case may be noisy and contain small loating parts; see
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Fig. 6. The architecture of our segmentation network ś iSEG-NET. Given an input scene X (top-let) and functionality label c (botom-let), the network

segments the interacting objects in the scene into diferent groups. The central object, extracted from the input encoding, can then be recombined with the

output segmented scene (right).

HardMax Segmentation Label smoothing Small component removal

Fig. 7. Segmentation result of an interaction context. Let: using just a hard

maximum. Middle: ater smoothing the labels given by the network with

graph cut. Right: ater removing small connected components in the volume.

Figure 7. To smooth the labeling of the voxels, we solve a multi-label

optimization problem by applying graph-cuts to the probability dis-

tributions [Boykov and Kolmogorov 2004]. We build a graph where

each voxel of an interacting object is a node, and there is an edge

connecting any two neighboring voxels, using 26 connectivity. The

data cost for a voxel and label l is set to 1 − pl , where pl is the

probability that the voxel is of label l . For the smoothness term

between diferent labels, we compute the frequency of each pair of

labels being neighbors in the training data and set the cost to be

1 − fi, j , where fi, j is the normalized frequency that the labels li
and lj are neighbors. Once we have a labeling for each voxel, we

ind all the connected components in the volume for any label. If

the component size is smaller than 10% of the size of the maximal

component of its label, we remove the component.

Lastly, by combining back the voxels of the central object, we

obtain a voxelized sceneY that contains multiple component objects

having diferent interactions with the central object. The voxelized

scene Y can be further reined by retrieving high-resolution models

to substitute the synthesized objects in the scene.

Note that, since the scenes generated with the iGEN-NET are

represented using 643 voxels, there is no guarantee that each object

in the scene is complete and isolated. Thus, to address this limitation,

we also beneit from introducing the segmentation network to label

the voxels, so that individual objects can be retrieved to constitute

a meaningful scene, described as follows.

Scene reinement. To replace the segmented voxels in a scene with

3D objects, we retrieve objects from the scenes in our dataset which

are the most similar to each connected component in the segmented

voxels (Figure 8). To deine a good similarity measure for retrieval,

Central object Supported Supporting Surrounding

Fig. 8. Scene refinement: given a synthesized, segmented scene (top-center),

we retrieve higher resolution models from scenes in our dataset (let and

right), to replace connected components of voxels with the same interaction

type. The result is a refined scenewithmore detailedmodels (botom-center).

we train a classiication network to map each object in our dataset

to its labeled interaction type, and then use the last feature layer of

this classiier to encode both the objects and segmented voxels in

our generated scenes. The L2 distance of this feature vector is used

for retrieval. Once all the objects that will replace the segments are

retrieved, we scale and translate them to place them around the

central object, so that the position and size of their bounding boxes

relative to the bounding box of the central object is similar to the

relation between the bounding boxes of their corresponding voxels

and the central object in the generated scene.

7 EVALUATION AND RESULTS

In this section, we present results obtained with the networks that

we introduce in this work, and further evaluate them with com-

parisons to previous works. Additional evaluation experiments and

timing information are provided in the supplementary material.

Dataset. We use a dataset of central objects and their surrounding

scenes derived from two sources. The irst source is the dataset of Hu

et al. [2016], composed of 15 classes of objects. Each central object

is given in the context of a scene demonstrating its functionality.
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Object Scene ObjectScene

Fig. 9. Selected results showing fSIM-NET used for object and scene retrieval.

Let: Retrieved scenes with functionalities most similar to query objects.

Right: Retrieved objects most similar to query scenes.

There are 1-5 interactions for each central object, where the types

of interactions included in the dataset can be inferred from the

geometry of the objects. We further extended this dataset with

additional categories from the ModelNet40 dataset [Wu et al. 2015].

We added the 10 categories that do not overlap with the dataset of

Hu et al. [2016] and which have functionalities that can be derived

from the objects’ geometries. We randomly selected 40 objects from

each category and complemented them with surrounding scenes.

In total, our dataset contains 1,008 scenes. The category names and

number of scenes are listed in the supplementary material.

Note that some of the scenes in our dataset were extracted from

larger scenes taken from datasets of previous works, while other

scenes were created by an artist, where the objects in the scenes

were collected from various sources. Thus, we cannot fully guaran-

tee that similar pieces of objects do not repeat in some of the scenes,

although we ensured suicient diversity in the arrangements of

objects. The afordance labels assigned to segmented scenes are

Carrying, Contained, Hanging, Holding, Hung, In front, Lighted, Ly-

ing, On side, Overhanging, Pushing, Riding, Side-supporting, Sitting,

Supported, Supporting, Surrounding and Typing. Examples of scenes

with these labels are shown in the supplementary material.

Functional similarity network. We irst evaluate our deep neural

network fSIM-NET that estimates the functional similarity between

objects and scenes, in the two possible directions: object-to-scene,

and scene-to-object.

Data collection for metric learning. The triplets needed for training

depend on the direction of the distance measure that we are train-

ing. For the object-to-scene direction, the triplets are of the form

(xi ,Y
+

i ,Y
−
i ), while for the scene-to-object direction, the triplets are

(x+i ,x
−
i ,Yi ). As our dataset contains category labels of the scenes,

we use these to deine our training examples. Using a pair of scenes
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Fig. 10. Performance of our functional similarity network in a quantitative

evaluation. Items in the legend are in the form łtraining direction-test

directionž, where o2s denotes łobject-to-scenež and s2o is łscene-to-objectž.

in the same category, we can build a positive example pair (x+i ,Yi )

or (xi ,Y
+

i ), by extracting the central object from one scene to deine

x+i or xi . To add negative examples to the pairs and form triplets,

we randomly sample one scene from a diferent category and take

either the whole scene to create Y−i or the central object for x−i .

Results and evaluation. Figure 9 shows selected results of using

fSIM-NET for object and scene retrieval, according to the two pos-

sible directions of the similarity measure. We note that all of the

top retrieved objects and scenes are meaningful examples of the

query’s functionality, and include a variety of human-object and

object-object interactions, such as sitting, hanging, and support.

In Figure 10, we present a quantitative evaluation of the perfor-

mance of the network in terms of precision/recall, where a result

is considered correct if the query and retrieved result are positive

examples of each other. For these experiments, we perform a cross-

validation evaluation where we divide the dataset into a 9:1 training

to test ratio. We evaluate the efect of training and testing the net-

work in each possible direction. In general, we observe that the

network provides a precision around 0.9 for recall rates up to 0.7.

We also see that the network provides the best results when trained

in the speciic direction that is being evaluated. However, the preci-

sion is comparable when we train and test the network in opposite

directions. Thus, in practice, training the network in one direction

tends to also constrain the other direction of the metric. Interest-

ingly enough, we found that when training the network in both

directions together, the performance is slightly worse than training

the network in each direction alone. A possible reason could be that

the margin in both directions constrains the embedding too much.

In the supplementary material, we present results on pose invari-

ance for additional evaluation of the fSIM-NET. We also examine its

generalization capabilities, although our experiments are not fully

conclusive due to the size and nature of our training set.

Comparison to alternative approaches. We compare our similarity

network to alternative approaches on the scene-to-object and scene-

to-scene directions as follows. We do not provide comparisons on

the object-to-scene direction since, to the best of our knowledge,

there are no previous works that optimize a metric in this direction.
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Fig. 11. Comparison of our functional similarity network to the functionality

model of Hu et al. [2016]. Please refer to the text for details.
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Fig. 12. Comparison of correlations between categories estimated by our

method (let) to those estimated by the method of Hu et al. [2016] (right).

Scene-to-object direction. In Figure 11, we compare our method

to the work of Hu et al. [2016], which learns a model of function-

ality with the handcrafted interaction context (ICON) descriptor.

Their model can be used for similarity assessment mainly in the

scene-to-object direction, as descriptor distances are constrained to

be comparable only in this direction. We observe that our method

trained on the scene-to-object direction obtains results comparable

to those of Hu et al., which shows that the geometric features ex-

tracted by their method capture the essential functionality features,

where the use of a simple learning method provides good results.

The advantage of our method is that the entire mapping is trained

end-to-end, without requiring complex geometric pre-processing.

Figure 12 provides a summary of the comparison by presenting

matrices that display the correlation between all pairs of categories

in our dataset. To compute an entry (i, j) of this matrix, the average

distance of all shapes in class i to those in class j is computed. The

inverse of these averages are shown by color mapping in the matrix.

Thus, larger values (closer to white) imply higher correlation. Note

how our network provides a much clearer indication of correlation.

For example, strollers and handcarts are strongly correlated, but

strollers and backpacks are not.

Scene-to-scene direction. We compare our work to two alternative

approaches: (i) The original ICON descriptor of Hu et al. [2015],

which is suitable for comparisons in the scene-to-scene direction,

since the descriptor can only be built from an input scene. (ii)

Siamese and Triplet networks. A common approach for learning

a distance measure between entities of the same type is to train

Siamese or Triplet networks to map the entities to a latent space,

where a distance metric can be deined [Wang et al. 2014]. Thus, we

train such networks to test alternative approaches to our fSIM-NET.
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Fig. 13. Comparison of our functional similarity network (denoted łOursž) to

two alternative networks (łSiamesež and łTripletž) and the ICON descriptor,

for measuring scene-to-scene distances. łSimilarity + SLž denotes a version

of our network trained with the Siamese Loss (SL).

To train Siamese networks, the training data is in the form of

positive or negative scene pairs, while for Triplet networks, the

training data is in the form of triplets containing two positive exam-

ples and one negative example. Scenes in our dataset are classiied

into diferent functionality categories. Thus, for deining training

pairs for the Siamese network, any two scenes in the same category

are considered as positive pairs, while any two scenes in diferent

categories are considered as negative pairs. For deining training

triplets for the Triplet network, we combine each positive scene

pair with a randomly selected scene from each diferent category,

which constitute negative examples.

Note that our fSIM-NET is not designed for directly providing a

scene-to-scene distance measure, but an object-to-scene distance.

However, we can use the Escn subnetwork to derive a scene-to-scene

distance measure. Moreover, we evaluate an alternative version of

our network which is trained by adding the same loss and training

data of the Siamese network to the Escn subnetwork. We compare

these two versions of our network to the alternatives in a cross

validation evaluation scheme with a 9:1 training to test ratio. The

results are shown in Figure 13.

First, we observe that all neural networks obtain much higher

precision than the ICON descriptor. Second, we observe that our

similarity network trained together with the Siamese loss obtains the

best result. As expected, our network trained without the Siamese

loss obtains a slightly lower precision due to two reasons. First, the

network does not use all the training data in our dataset, since we

sample triplets for each positive pair by adding a random negative

example from another class, which may not involve all possible pairs

of objects. Second, the network uses a loss that does not directly

optimize scene-to-scene distances, as the Siamese network does.

Classiication. To evaluate the classiication version of our net-

work, we assign to each central object the ground-truth functionality

label of its corresponding scene. Next, we compute the classiication

accuracy simply as a binary value indicating whether the correct

label was predicted by our network or not, averaging this value for

all test shapes. We compare the classiication accuracy for three

diferent alternatives: (i) We add two fully connected layers after the

last layer of the Eob j subnetwork in our fSIM-NET, and train our

network together with a classiier. (ii) We use the object-to-scene

distance provided by the fSIM-NET to ind the nearest neighbor
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Fig. 14. Interaction contexts (in gray) synthesized for two central objects

(in orange) with networks trained with the indicated number of epochs.
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Fig. 15. Gallery of interaction context generation results. We show two

selected central objects from each category (in orange), and the scenes

generated by our network iGEN-NET around the objects (in gray). Note

how the scenes generated for each pair of objects are quite distinct and

adapt to the geometry of the objects, e.g., drying racks and cups.

scene to a query object, assigning the label of the scene to the object.

(iii) We use a direct neural network classiier that uses exactly the

same network architecture as the Eob j subnetwork in (i), but is not

trained together with the Escn subnetwork.

In a cross-validation experiment with a 9:1 train to test ratio over

25 object categories, we observe that the direct network, i.e., alterna-

tive (iii), obtains an accuracy of 84%, the nearest neighbor approach,

i.e., alternative (ii), obtains 92%, and the fSIM-NET extended with a

classiier, i.e., alternative (i), performs slightly better at 94%. Thus,

the use of our network provides results that are around 10% higher

than when using a direct classiier, with a slight improvement when

attaching a classiier to the network.

Interaction context generation network. To train the generation

network, we use 90% of the scenes and their central objects in our

dataset as training data, along with their labels, and test on the

remaining 10%. Note that a single category label is assigned to each

scene, e.g., desk, table, bed, etc.

We present results of using our iGEN-NET to synthesize inter-

action contexts, and analyze how the network adapts to diferent

types of input. Figure 14 illustrates the learning progress of the

generative network, where we show the synthesis results for a same

testing shape obtained with networks at diferent training stages.

We observe that after 120 epochs of training, the network is able to

synthesize interaction contexts efectively, where the scenes contain

a rich variety of details and meaningful object shapes, such as the

human sitting on the bench or objects on top of the table.

Bathtub Bowl

Stool DryingRack

Vase Stool

Table Desk

BowlCup

Vase

Stool

Cup

Lamp

HandcartChair

Fig. 16. Gallery of multi-functionality synthesis results with their segmen-

tations. Given the object in the middle, we generate the two interaction

contexts on the let and right, based on the labels denoted below. Note how

the generated scenes adapt to both the input object and label provided.

Figure 15 presents a gallery of interaction context synthesis re-

sults, where we show two diferent objects from the same class

and their synthesized contexts. In these examples, we observe how

the results of the network properly adapt to the geometry of the

input shape. For example, hanging clothes are synthesized on the

appropriate regions of the drying racks, even though one rack is

straight and the other is circular, and a synthesized hand grasps a

cup diferently depending on whether a handle is present or not.

In addition, Figure 16 shows a gallery of synthesis results for

shapes that can servemore than one functionality. In these examples,

we synthesize two interaction contexts for the same input shape

while specifying a diferent functionality label. We observe that the

synthesized contexts adapt satisfactorily to the label provided. For

example, a table can easily function as a table or desk. However, in

each case, the synthesized scene is diferent in the types of objects

placed on the table, showing the subtle diference between tables

and desks. Similarly, a basket can also function as a vase or cup, as

shown by the synthesized interaction contexts. The examples for

the chair and handcart show that, although handcarts have wheels

attached to them, their geometry in fact approximates well the

functionality of a chair. In summary, we observe in these qualitative

examples how the synthesized interaction contexts adapt to both the

geometry of the input objects and the functionality label provided.

Comparison to alternative synthesis approaches. We compare the

results obtained with our iGEN-NET to two retrieval methods that

could serve as alternative baselines for generating interaction con-

texts. The irst baseline involves retrieving a central object from the

dataset most similar to the query comparing only isolated objects.

Speciically, we use the Chamfer distance which can be used to com-

pare two voxelized objects [Fan et al. 2017]. The second baseline

involves retrieving the closest scene to the query object with our
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Input object Chamfer distance fSIM-NET iGEN-NET

Fig. 17. Comparison of scenes synthesized with our iGEN-NET to retrieval-

based alternatives: The most similar central object retrieved using Chamfer

distance (shown with its corresponding scene) and the most similar scene

retrieved with the fSIM-NET.

fSIM-NET. Next, we could take the objects from the retrieved scenes

and place them around the query object to generate an interaction

context. Note that, in our comparison, we do not explicitly perform

this transfer of surrounding objects, but show the retrieved scenes

to demonstrate how diicult it would be to generate scenes with

these baseline methods.

In Figure 17, we show three examples that are representative of

the results in a large experiment. We observe that the irst baseline

often retrieves scenes that have completely diferent functionality

than the query, and would thus lead to incorrectly synthesized

scenes. The second baseline can retrieve objects that are slightly

diferent from the query, e.g., a drying rack with a central bar rather

than two bars. Thus, transferring the objects in a straightforward

manner would lead to the context scene not properly adapting to the

query object, e.g., loating clothes, while the iGEN-NET generates

results adapted to the geometry of the query object.

Finally, as discussed in Section 2, scene synthesis methods in the

literature that take functionality into consideration typically model

only human-object interactions [Ma et al. 2016; Savva et al. 2016].

For pairs of objects, mainly co-occurrence is considered, but not

object-object interactions as in our iGEN-NET.

Diversity of generated scenes. To evaluate the diversity of the

synthesized output, we perform a comparison of the variation in

the training data compared to the variation in the synthesized data.

Ideally, we would compare the generated scenes to the training data

with a similarity measure such as the Chamfer distance. However,

this would not provide conclusive evidence as the output in general

only partially overlaps with the training data. Thus, to evaluate the

diversity of generated data, we irst compute the Chamfer distance

between each pair of training scenes to obtain a mean and variation

of their similarity. Then, we compute the mean and variation for

the generated scenes. The Chamfer distance mean and variation for

the training set are 7.96 and 37.19, respectively, while those for the

generated set are 7.40 and 28.13.

Moreover, for each training scene, we ind the most similar gener-

ated scene and compute their Chamfer distance. We then compute

Fig. 18. Comparison of interaction contexts generated with (let) and with-

out (right) giving the functional label of the central object. Note the noise

in the generated scenes and how diferent functionalities get mixed up.

Fig. 19. Comparison of interaction contexts generated with (let) and with-

out (right) the transformer subnetwork. Note how the generated scenes

display noise and structural problems.

the average of these distances for the entire dataset. The mean and

variation of the distances from each training scene to its closest

generated scene are 1.3775 and 0.0013, respectively, implying that

we can ind a generated scene that is close enough to each training

scene, considering the distance mean and variation of the train-

ing scenes as reported above. This experiment indicates that the

diversity of the output is close to that of the training data.

Although the synthesized contexts adapt to the provided object

and label, our network is a non-stochastic regressor and thus it can-

not provide diferent outputs when given the same object and label.

As indicated by the diversity experiment above, the network does

not gurantee to synthesize novel interacting objects, but positions

the objects existing in the training data so that they appropriately

adapt to the given object. Although novel objects are not generated,

our network can synthesize object usage scenarios that do not exist

in the training data, e.g., there is no sitting scenario for the handcart

shown in the bottom right of Figure 16. Moreover, the label provided

to the network ensures that artifacts in the synthesized scenes are

minimized, in contrast to scenes generated without this information,

as shown in Figure 18. Moreover, the transformer subnetwork also

contributes to the quality of the generated scenes by keeping but

also properly scaling and placing the input object, in contrast to the

results generated without this sub-network, as shown in Figure 19.

Without the transformer subnetwork, the network tends to generate

the most common or average scene in each category.

Segmentation network. To train the segmentation network iSEG-

NET, wemanually segment all the scenes in our dataset into separate

objects, and assign a common label to all the objects that have similar

interactions with the central object, e.g., all the books on a shelf

receive the same label of łsupportedž. The segmented volumes are

used as training data for the network. We provide examples of our

labeling in the supplementary material.
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Fig. 20. Gallery of scene segmentation results obtained with our segmenta-

tion network. The various interaction labels are shown in diferent colors,

while the central objects are colored orange.

Figure 20 shows a gallery of segmented interaction contexts ob-

tained with our iSEG-NET. In addition, Figure 16 shows the results

on scenes generated for objects with multiple functionality. We ob-

serve in all of these examples that the network is able to segment

objects into groups that have similar interactions with the central

object, and identify the correct labels for the groups. For example,

the scene for a desk is segmented into the chair besides the desk, the

loor which supports the desk, and one group for all the objects that

are supported by the desk. In general, the segmentations include

between one to ive diferent groups of objects. To provide a quanti-

tative evaluation of the iSEG-NET, we compute the segmentation

accuracy of the network in a cross-validation experiment, inding

that the average accuracy for a segmentation obtained by applying

a hard maximum to the label probabilities is 98%.

Scene reinement. Figure 21 shows examples of reining the syn-

thesized scenes by replacing sets of voxels with higher-resolution

models retrieved from a dataset of objects. We observe how the

segmentation into interaction types allows the post-processing to

select meaningful objects to compose the scenes, and place them in

appropriate positions and orientations.

8 DISCUSSION, LIMITATIONS, AND FUTURE WORK

In this work, we enable functional understanding and functional-

ity hallucination of isolated 3D objects with the introduction of

three deep neural networks: fSIM-NET, iGEN-NET, and iSEG-NET.

Speciically, the networks allow not only to predict the functionality

of an object, but also to substantiate it by generating an example

scene that demonstrates how the object interacts with surrounding

objects to reveal a functional usage scenario.

We show in our evaluation that fSIM-NET outperforms hand-

crafted descriptors and models for functionality prediction proposed

in previous works. In addition, the scenes exemplifying functional

uses of objects generated by our iGEN-NET incorporate both human-

object and object-object interactions, and adapt to the geometry of

the objects. Finally, the iSEG-NET segments the synthesized output

so that it can be more easily analyzed and reined, e.g., by replacing

voxels with higher-resolution meshes.

Central object

Contained Supporting Contained Supporting

Contained Overhanging Supporting Sitting Supporting

Typing Supporting Hanging Supporting

Riding Supporting Hanging Hung

Contained Supporting

Supported Supporting Carrying

Lighted Supporting

Fig. 21. Gallery of scene refinement results. In each example, we show the

input shape, generated scene, and refined scene, including interaction labels.

As a irst step in functional analysis using deep neural networks,

our work has several limitations that can suggest interesting direc-

tions for future work. To start, we utilized the category labels of

scenes in our dataset to select positive and negative examples for

creating the training triplets of the fSIM-NET. This can limit the

potential of the network in discovering cross-category functionali-

ties, e.g., between desks and tables, if desks are added as negative

examples of tables and vice-versa. A possible direction for improv-

ing the learned similarity measure is to directly collect observations

on the similarity of triplets, e.g., via crowdsourcing. In this man-

ner, the training examples would potentially also capture natural

correlations that exist between diferent categories.

Currently, the interaction contexts generated by the iGEN-NET

are quite limited in terms of scene complexity, as theymainly demon-

strate the functionality of one object. It would be interesting to

extend this approach to generate larger and more complex scenes

that display broad functionalities, e.g., a living room or kitchen.

Furthermore, our iSEG-NET segments groups of objects in the syn-

thesized scenes according to their interaction types, which is the

natural grouping for interaction contexts. However, post-processing

methods would also beneit from a segmentation of the scene into

individual objects, enabling the reinement of each individual ob-

ject. In addition, our proposed scene reinement method allows us

to adequately exchange voxels for meshes in many of the scenes.

However, there are diferent possibilities for improving this simple

reinement method. One option would be to incorporate semantic
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constraints speciic to each interaction type, e.g., two objects with

łsupportedž and łsupportingž interactions should be in contact.

Finally, the interactions that can be handled by ourmethod are lim-

ited to static functionalities that can be inferred from the geometry

of objects. A few recent works also model dynamic interactions for

analyzing the functionality of objects. For example, Hu et al. [2017]

represent the mobility of shape parts with a linear model involving

only two static part conigurations, while Pirk et al. [2017] encode

the dynamic use of objects by tracking the trajectory of particles

on the surface of an object during an interaction. Incorporating

part mobility or dynamic trajectories into our functional analysis

framework would certainly extend the range of functionalities that

can be predicted and demonstrated with synthesized scenes.
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