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ABSTRACT

User control over fluid simulations is a long-standing research prob-
lem in computer graphics. Applications in games and films often re-
quire recognizable creatures or objects formed from smoke, water,
or flame. This paper describes a two-layer approach to the problem,
in which a bulk velocity drives a particle system towards a target
distribution, while simultaneously a vortex particle simulation adds
recognizable fluid motion.

A bulk velocity field is obtained by distributing target particles
within a mesh, then matching control particles with target parti-
cles; control particles are given a trajectory bringing them to their
targets, and a field is obtained by interpolating values from the con-
trol particles. A detail velocity field is obtained by traditional vor-
tex particle simulation. We render the final particle system using
stochastic shadow mapping. We spend some effort optimizing our
processes for speed, obtaining simulations at interactive or near-
interactive rates: from 70 to 500 milliseconds per frame depending
on the configuration.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

1 INTRODUCTION

Control is arguably the most important problem in modeling natural
phenomena for special effects. Without a high-level control system,
the artist may have to manipulate physical parameters and inject
forces in many places to achieve a particular desired result. Ideally,
control systems should be intuitive and easy to use; the artist must
be able to effectively achieve a desired effect. Since we are using
fluid simulation, which is usually already expensive to compute, it
is important that the control scheme be as computationally efficient
as possible. Our goal is to find a control scheme fast enough for
artists to use as they design a scene. We are primarily interested in
real-time performance, and have designed a system that sacrifices
physical accuracy in favor of speed. Interactive speeds in simula-
tion and rendering gives artists shorter iteration times when shaping
new effects, and is essential for games and interactive media.

One useful abstraction is a target that fluid particles travel to-
wards, such as a target density function, or mesh. Many examples
of creatures, characters and objects made up of fluid are found in
animation and movies, such as the the rivergod of Narnia [30] or
Gandalf’s galley made of smoke [4]. In these cases, an animator
places a target mesh, animates it as though it were a character, and
the control system determines how to route the fluid towards this
destination. Such a control scheme avoids the need to tune numer-
ous physical parameters.

Our approach is a particle-based target driven control scheme,
applied to smoke simulation. We split the velocity field into two
components, a base velocity and a detail velocity: a low-frequency
bulk velocity field drives the smoke volume towards a target mesh,
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while a Lagrangian vortex particle turbulence model generates fine-
scale fluid motion. For the base velocity, we generate target parti-
cles within a control mesh, and match these with control particles
placed in the smoke volume, to drive the smoke velocity. Thus
we can effectively drive the smoke towards the target shape, while
providing high-level control to an animator. The detail velocity,
generated with vortex particles, adds the appearance of a turbulent
gas. We contribute this two-part approach, using a target particle
based approach to fluid control, combined with a Lagrangian par-
ticle method; the resulting scheme is computationally efficient and
operates at interactive rates.

2 PRIOR WORK

Foster and Metaxas [7, 8] were among the first in computer graph-
ics to directly solve the incompressible Navier-Stokes equations,
using small grids. Stam [25] demonstrated unconditionally stable
Eulerian simulation: borrowing ideas from the Lagrangian perspec-
tive, Stam’s semi-Lagrangian advection avoids creating excess ve-
locity. Subsequent work by Fedkiw et al. [5] introduced the notion
of vorticity confinement to counter numerical diffusion introduced
by semi-Lagrangian advection. Foster et al. [6, 11], applied the
particle level set method to counteract diffusion for free-surface liq-
uids.

Lagrangian approaches are characterized by simulation elements
moving through the domain. Smoothed Particle Hydrodynamics
(SPH) solves the Navier-Stokes equations by interpolating values
in space, given a smoothing kernel [15].

Vortex simulation is a Lagrangian approach using primitives
that spin the fluid elements, which together produce turbulent fluid
flow [3]. Park et al. [18] use vortex particles for smoke simulation.
Their method for no-slip and no-through boundary conditions pro-
duces an effect known as vortex shedding, where new vortices form
a turbulent wake behind a solid object. Selle et al. [21] demon-
strate that vortex particles can counter the effects of numerical dif-
fusion in Eulerian fluid simulation. Others have proposed using
extended vortex primitives such as straight lines [9], connected line
segments [1, 31], and continuous Fourier series [2]. Pfaff et al. [19]
propose a technique for combining vortex sheets with a bulk veloc-
ity to produce high-resolution smoke simulation, though without
applications in fluid control.

Control is an extremely important aspect of animation; effect
production often calls for a the fluid to assume a specific target
shape [30]. Many different approaches to control have been ex-
plored in recent years [16].

Seminal work by Treuille et al. [29], later improved by Mc-
Namara et al. [17] using the adjoint method, uses artist supplied
keyframes of a target density function to directly specify the fluid
destination. Using nonlinear optimization, they find optimal con-
trol forces that move fluid to a target, while minimizing the total
amount of control. Their methods were reported as unstable and
slow, requiring derivatives of every control parameter.

Subsequent work by Fattal and Lischinski [4], simplified their
approach by using a driving force combined with a smoke gathering
term. A driving force provides a shape matching velocity, along
the gradient of the target density. The gathering term adjusts the
source density of the smoke cloud to match that of the density of
the target. Their efficient framework has the problem of turbulent
motion stopping once the smoke matches the target shape.



Shi and Yu [24, 23] propose a method that is both efficient and
allows the smoke to move naturally after reaching the target density.
They convert the target density field to a level set, and apply control
velocity along the boundary. They also propose applying a similar
method to free surface liquids [24], that considers the skeleton of
the target mesh to be a center that pulls the liquid inwards, keeping
it together. Hong [12] proposes using a potential field for target
control. His simple method is very efficient; however, without user
interaction, the method may obscure thin features.

Rasmussen et al. [20] propose a different form of control frame-
work than previous target-based methods. Their particle-based de-
tailed control scheme gives the artist the ability to place control
particles governing the velocity, level set (liquid injection/erasers),
and divergence. Clouds of thousands of particles allow for detailed
artist control.

Thurey et al. [28] propose a system for particle fluid control
based on the Lattice Boltzmann method. Their control framework
uses a single class of control particle instead of many; control par-
ticles act as both locally based magnets, that attract nearby fluid
particles, and wind forces, that transport fluid particles along the
moving path of the control particle. This allows a simpler control
scheme than Rasmussen et al.; however, it again lacks target-based
control.

Spline curves offer a different choice of control primitive, where
fluid moves along a path in space. Gates proposes a spline primi-
tive consisting of a series of directional flow primitives, to gener-
ate a divergence free velocity field [9]. Kim et al. [14] augmented
the path control spline with vortex particles, Rankine vortices, and
the ability to handle self-intersecting paths. Their control system
is computationally efficient, adding little overhead, and is able to
handle complex paths, with attractive results. Angelidis et al. [2],
in their work on vortex filaments, propose a controlled method of
adjusting the properties of a vortex ring, to guide the motion of the
filaments along a curve.

3 OVERVIEW

In our approach to targeted fluid control, we split the velocity field
in two: a control velocity field moves the smoke directly towards
the target, matching the target shape, while a turbulent velocity field
adds the illusion of fluid motion. Our algorithm is composed of the
following steps:

1. Initialize marker, control and target particles

2. Compute the bulk control velocity field (Section 4)

• Generate attraction force on the control particles

• Compute control velocity field

3. Compute the turbulent vortex velocity field (Section 5)

• Evaluate vortex velocity field

• Update vortices (spinning and strength exchange)

• Spawn new vortex particles

4. Particle update (Section 6)

• Particle advection

• Smoke particle redistribution

5. Render marker particles (Section 7.1)

The details of the algorithm are given in sections 4, 5, and 6.
We discuss rendering and implementation details in Section 7, and
present some results in Section 8. In Section 9 we outline some key
observations and future work before concluding in Section 10.

The specific contributions of this work are:

Figure 1: Mesh sampling example

• A unique point-based shape matching algorithm based on
point correspondence

• An efficient and parallel direct evaluation method for finite
support vortex particles

• A method to combine vortex particles with a shape matching
velocity for targeted smoke control

4 TARGETED CONTROL VELOCITY

This section describes how our base velocity system moves the fluid
to the target. Before starting the simulation, we first sample the tar-
get mesh, generating a set of target particles. Then, we place an
equal number of control particles inside the smoke cloud. A cor-
respondence between the target and control particles provides the
basis for an attraction force, which then steers the control particle
velocity. We then interpolate this control velocity into a bulk veloc-
ity field, used to advect particles during simulation.

4.1 Control Particles
We wish to place control particles evenly over the smoke domain.
We first compute two scalar fields: a smoke marker particle density
field, representing the distribution of the M marker particles over
space, and also a control density field, from the existing control
particles, if any. By using a separable tent blur with kernel radius rm
(for smoke particles) and rc (for control particles), we can compute
these fields very efficiently. Good values of rm and rc are typically
quite small, and though they depend on the size of the simulation,
they might be as small as 5% of the size of the domain of interest.

We then sample the space of the marker particles uniformly,
placing a control particle where the ratio of control potential to
marker potential is below a given threshold. On placing a new par-
ticle, we update the control density field, and repeat this process
Cinit times. We can choose between two policies on when to ini-
tialize control particles: either once whenever new smoke particles
are emitted, or once every frame, allowing the control particles to
saturate the smoke. In either case, we will have N control particles,
where N�M.

4.2 Target Particles
Our next step is to generate exactly N target particles inside the
target shape. For performance, we first convert the target shape to
a signed distance field representation, using the approach described
by Swoboda [26].

We then perform stratified sampling of a grid for an initial set of
target particles, N′ 6= N. In a second pass, we add or delete random
particles until we have exactly N. In the case of undersampling, we
add points with a uniform random distribution. Figure 1 illustrates
our sampling outcome.

The target shape may be undergoing transformations, or moving
through space. To move the points with a changing mesh, we use



linear interpolation over the Delaunay triangulation, or tetrahedral-
ization in 3D (for simplicity, we call the 3D case a triangulation
also). We compute the triangulation once, when the mesh is initial-
ized. The triangle containing each target particle, in the mesh’s rest
configuration, gives a barycentric coordinate identifying the posi-
tion of that target particle. We store the containing mesh element,
and corresponding barycentric coordinate, for each point, and when
the mesh moves we can compute a point’s transformed position by
using its barycentric coordinate with the new mesh vertex positions.

4.3 Attraction Force
Given our cloud of N control and target particles, we wish to find
a correspondence between them, and use this to drive the smoke
towards the target. In order to find a force that moves the con-
trol particles quickly and accurately, we use energy minimization
to find a matching with paths of short distance. However, note that,
although we prefer short paths, since that will mean faster conver-
gence, we also prefer paths of uniform length, so distant particles
will arrive at the target at about the same time as nearby particles.
Thus, we choose our energy metric to be squared Euclidean dis-
tance, penalizing longer paths. The correspondence then gives an
attraction force Fa, exerted on the control particles.

We initially assign each control particle to a unique random tar-
get. Then, at each time step, we perform a fixed number Copt of op-
timization steps. We show our optimization algorithm in Algorithm
1. We randomly choose two control particles a and b, and test if ex-
changing their targets produces an improvement in global energy.
The fixed number of iterations per frame gives an incrementally im-
proving, adaptive and coherent solution, and allows us to provide a
fixed run-time budget. Although not guaranteed to converge, with
control particle counts in the thousands, a few thousand iterations
will provide an approximate solution with nearly identical quality
to the optimal solution. In other words, after a certain time invest-
ment for optimization, the improvements in velocity field quality
drop off rapidly.

Figure 2 shows a sample of our the performance of our algorithm
in a simple 2D scene with 10,000 particles. After 80,000 iterations,
the solution is only improving very slowly. In most of our results
we use a few thousand control particles, and hence arrive at a near-
optimal solution with far fewer iterations than this example. We are
able to perform 50,000 swaps in under 1 ms. This is virtually free,
and gives a near-optimal solution within 2-3 frames.

Algorithm 1 Incremental correspondence optimization

for 1 to Copt do
i← RANDOM(1,N)
j← RANDOM(1,N)
a← POSITION(i)
b← POSITION( j)
ta← TARGETPOSITION(i)
tb← TARGETPOSITION( j)
dold ← |a− ta|2 + |b− tb|2
dnew← |a− tb|2 + |b− ta|2
if dnew < dold then

SWAP(POSITION(i),POSITION( j))
SWAP(TARGETPOSITION(i),TARGETPOSITION( j))

end if
end for

Each pair of control and target particle uses an attraction weight
wa, to compute the attraction force Fa. Here, wa = (|x− xt | −
Aφ )Aρ , where x is the position of the control particle, xt is the posi-
tion of the target particle for this control particle, and Aφ and Aρ are
scaling parameters. Then, Fa = x−xt

|x−xt | ∗ SATURATE(wa)∗Sa where
Sa is a global attraction strength parameter, and SATURATE clamps
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Figure 2: Correspondence optimization convergence with 10,000
particles

wa to [0,1]. This linear function gives an increasing weight with
distance, allowing the attraction force to gradually ramp down as
particles approach their targets.

During particle update, described below in Section 6, we inte-
grate attraction force to give control velocities. We also apply a
simple velocity damping to the control particles: we compute a
damped velocity vd = v f ∗ (1− c), where c is a scalar damping
strength parameter, usually near zero.

4.4 Velocity Interpolation and Extrapolation
We have a cloud of moving control points, each with a separate
velocity; we want to distribute these velocities over space to trans-
port a cloud of marker particles representing the smoke. We de-
termine an interpolation (for velocities between our control points
samples), and extrapolation (for velocities outside the region of the
samples), using a variant of Shepard’s Method [22], i.e., inverse
distance weighting. We have a collection of N samples ui, where
each interpolated control velocity uc(x) at a point x is expressed as

uc(x) =
N

∑
i=1

wi(x)ui

∑
N
j=1 w j(x)

, (1)

where

wi(x) =

{
(r2

v −d(x,xi)
2)3 if d(x,xi)< rv

0 otherwise
. (2)

Here d is Euclidean distance, with radius rv giving the region
of influence of a control particle. This distance weighting defines
velocity over the radius of a particle, thus it extrapolates velocity
outside the convex hull of the data points, to a distance of rv. In
practice this function gives good results, and is very simple to im-
plement.

We chose this method for its speed, simplicity, and ease of ex-
trapolation; however, the interpolation is not exact. The interpo-
lated velocity at control particle position p does not equal the orig-
inal control velocity. In effect, we have a smoothed velocity field,
averaged over nearby particles. Since we are creating a bulk veloc-
ity, this is adequate; for applications that require an exact method,
the interpolation module can be replaced.

5 TURBULENT VORTEX VELOCITY

Our control velocity efficiently matches the source density to the
target density; however, it lacks turbulent motion. To add the miss-
ing characteristic rolling, turbulent smoke motion, we use the vor-
tex particle method to generate a turbulent velocity field, and com-
bine it with the control velocity for our final velocity field.



5.1 Vortex Particle Method
The equations for vortex velocity are derived directly from the curl
of the Navier-Stokes equations:

∂ω

∂ t
+(u ·5)ω = (5u) ·ω + v52

ω +
1
ρ
5×f. (3)

We solve the first term in Equation (3) using the vortex particle
method. We are most interested in the velocity contribution, uv(x)
of a vortex particle v at a point x. For our work, we use the vortex
energy kernel proposed by Angelidis et al. [2], where the velocity-
from-vorticity equation is given as

uv(x) =
Nv

∑
i=1

[(x− xi)×ω]ξ (|x− xi|2) (4)

for Nv vortices. Here, ξ defines the strength of a vortex, given a
squared distance to a point in space. Angelidis et al. define the
compact energy kernel, ξ , of a vortex as

ξ (x2) =

{(
4− 20

x2+4

)2 if x2 < 1,
0 otherwise.

(5)

This kernel requires no square roots, is smooth throughout the do-
main, and is zero everywhere where x2 ≥ 1. Combined with a vor-
tex radius, σ , which determines the area of effect of each vortex, the
vorticity vector ω determines both the direction and magnitude of
rotation. Thus the expression for vortex vorticity in our simulation
is ξ (x2)σ .

5.2 Efficient Vortex Evaluation
Given a collection of vortex particles, each with a radius and vortic-
ity vector, we want to evaluate the velocity at every smoke particle
as accurately and quickly as possible. Since we care about per-
formance more than physical correctness, we borrow elements of
the Eulerian frame, to accelerate the velocity computation. We can
compute the exact vortex velocity at every cell center of a uniform
grid directly, and then find an approximate vortex velocity any-
where in our domain of interest, using bi-linear or tri-linear inter-
polation along the velocity grid. Note that if the grid is too coarse,
the structure of the vortices will be lost due to undersampling.

We perform direct velocity from vorticity computation using a
“splatting” approach, inspired by 3D graphics hardware texture
blending. For every vortex, we find a bounding box of grid cells
from its area of influence, given by its radius and magnitude; we
then traverse each cell in order, adding the new vortex velocity to
each cell center we traverse. This simple approach allows us to ex-
ploit SIMD vector instructions to compute several velocity values
in parallel. Although the linear interpolation from grid cells intro-
duces a source of error, the error is small enough to preserve the
overall effect; the performance advantages are overall more benefi-
cial than perfect accuracy.

5.3 Particle Strength Exchange
The second term of the right hand side of equation (3) is a dif-
fusion term that describes how the spinning vorticity slows down
over time. In our Lagrangian vortex particle framework, we imple-
ment this diffusion effect using particle strength exchange [3, 18]
(PSE). Over time, nearby vortices will exchange vorticity, gradually
unifying their motion.

We implement PSE by finding neighbouring pairs of vortices.
For nearby vortices iand j, with vorticity ωi and ω j, and radii σi
and σ j, we compute new vorticity values as

ω
′
i = ωi +υ ∗di j ∗ (σ3

j ω j−σ
3
i ωi), (6)

where

di j = SATURATE
(
1−
|pi− p j|

dmax

)
. (7)

And similarly for ω ′j . Here, SATURATE is a function which clamps
the input value to [0,1], and dmax is a parameter which governs the
maximum distance at which vortex particle can affect another. The
parameter υ determines global diffusion strength.

5.4 Vortex Spinning
The first term on the right side of equation (3), is called the stress
term. It describes the stretching and tilting of vortices, due to the
velocity field. This term only applies in 3D. Expanding this term in
three dimensions, where the 3D velocity vector u = (u,v,w)), we
get

ωx
∂u
∂x

+ωy
∂u
∂y

+ωz
∂u
∂ z

=


∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z


ωx

ωy
ωz

= J(u)ω.

(8)
J(u) is a 3 by 3 matrix, called a Jacobian matrix. In our implemen-
tation, similar to that of Gourlay [10], we compute the Jacobian
from the gradient of the velocity field. Since this term can cause
energy to be gained or lost from the system, as a result of round-off
and truncation due to linear interpolation, we constrain the energy
of each vortex by normalizing the new vorticity vectors to the same
magnitude as they had before this step. We call this vortex spin-
ning, instead of stretching or tilting, as it only changes the direction
of rotation.

5.5 Spawning Vortex Particles
We use dart-throwing to spawn new vortex particles, similar to the
process of placing control particles. We store the current turbulent
energy of the system in a grid, then randomly throw darts into the
volume (or area in 2D); when the marker particle density (described
in Section 4.1) is above a given threshold, and turbulent energy is
below a threshold, we place a new vortex particle. We randomly
assign vorticity and radius. Incrementally, over time, vortex parti-
cles will saturate the smoke. As we describe in the next section,
vortex particles move with both the control velocity and vortex ve-
locity fields, but control particles only move with their own control
velocities.

6 PARTICLE UPDATE

Now that we have described our methods of vortex simulation and
initialization, we will describe how we move our particles with the
velocity in our system. Since we intend to simulate millions of
marker particles at interactive rates, performance is our primary
concern. We first combine the interpolated control velocity field,
described in Section 4, with the turbulent vortex velocity field de-
scribed in Section 5.1. We store this combined velocity field in a
uniform grid, which can be quickly sampled for an approximate
velocity, using bilinear or trilinear interpolation.

6.1 Advection
Vortex particles and smoke marker particles move according to the
current combined velocity field. This means the marker and vortex
particles are both subject to the influence of the control and vortex
velocities. Control particles, in contrast, move according to their
individual control velocities, determined from the attraction force.

To find the new position of a particle given a velocity, the prob-
lem statement takes the form of an ordinary differential equation.
However, in our case, we can make a simplification; because we
have a velocity field, we can simply step the position of the parti-
cles through this field, instead of recalculating the entire state vector



at every step. In this simplified case, if the position of a particle i is
xi, we have xn+1 = f (∆t,xn), where f is a function that computes a
new position from the previous position for a given time step value,
∆t.

We choose to use a second-order Adams-Bashforth scheme, de-
scribed by Park and Kim [18], where

xn+1 = xn +∆t
(

3
2

u(xn)−
1
2

u(xn−1)

)
. (9)

This higher-order scheme uses the previous frame’s velocity to esti-
mate a more accurate particle trajectory. The higher-order accuracy
comes at a very low cost in runtime performance; the cost in terms
of memory is the expense of storing velocities computed for the ev-
ery particle in the previous simulation step. Control particles move
according to individual forces; we use the Euler method to inte-
grate attraction force before advecting the particles according with
the Adams-Bashforth integration mentioned previously.

6.2 Redistribution

When we move the marker particles along with the vortex velocity
field, they often end up outside the area of control; chaotic vortex
movement may trend away from the region of control. This effect,
similar to diffusion, conceals mesh details. Since we are focused
on performance, we chose a non-physical technique to address this
scattering. Finding marker particles outside of the control area, we
randomly place them back in the control area using rejection sam-
pling. The algorithm is listed in Algorithm 2. Note that for sam-
pling control potential, we use the control particle potential field
described in Section 4.1. Also the value of ε must be small to en-
sure the algorithm terminates.

Algorithm 2 Incremental randomized marker particle redistribution

ControlRegion← COMPUTEBOUNDINGBOX(ControlPoints)
for 1 to Credist do

i← RANDOM(1,NumMarkerParticles)
p←MarkerParticlePosition(i)
if CONTROLPOTENTIALAT(p)< ε then

repeat
p′← RANDOMPOINTIN(ControlRegion)

until CONTROLPOTENTIALAT(p′)< ε

MarkerParticlePosition(i)← p′
end if

end for

The incremental nature of the algorithm is such that, if Credist
is sufficiently large, gradually the particles move back inside the
volume. It also has the advantage of being simple to implement, and
computationally inexpensive. We have found this method prevents
the marker particles from being left outside the region of influence
of the control points effectively and unobtrusively.

7 IMPLEMENTATION

In this section we will describe the implementation of our simula-
tion and rendering. Since we chose fast, parallelizable, techniques,
we make use of the threading abilities of CPUs as much as pos-
sible. We avoid the complex functions usually involved in spatial
structures such as octrees and KD-trees, and many steps are triv-
ially parallel. Even with detailed simulations, we usually run at
interactive rates.

We make use of SIMD instructions for optimization. Since they
operate most effectively by loading groups of data elements simul-
taneously, instead of storing a single array of packed structures with
(x,y,z) data per element, called the ‘structure-of-arrays’ layout, we

Figure 3: A sample animation matching the shape of a horse

prefer the ‘array-of-structures’ layout. The array-of-structures lay-
out stores data in a structure of two or three large linear single-
component arrays; it stores two large float arrays for 2D data, and
three large arrays for 3D data. The allows us to skip the overhead of
reorganizing our data in memory to fit SIMD operations, and gives
good read/write performance.

7.1 Rendering Implementation
We use a volumetric rendering proposed by Swoboda [27] named
“stochastic shadow mapping.” Swoboda’s method has the main ad-
vantages of being relatively cheap to compute and simple to imple-
ment, while giving attractive renders.

Similar to traditional shadow mapping, we use a large 2D
shadow map texture (in our results 4096x4096). We draw the smoke
particles as points to this texture from the light’s point of view, stor-
ing distance to the light. We then perform a stochastic shadow test
in a second pass: for every particle, we sample the shadow map
cells near the test particle with a large kernel (of size as large as
15). We perform a shadow test of the stored shadow depth versus
particle depth, and count the number of failed tests. The fraction of
occluded samples determines the final opacity value for the particle.
The large kernel helps give a smooth, soft result.

Due to the numerous collisions when inserting points into the
large shadow map, the smoke will display a fair amount of temporal
aliasing. Thus Swoboda proposes two additional steps to produce
a temporally smooth render. First, insert particles into the shadow
map with a small, random offset. This helps to ensure that no par-
ticle or group of particles are obscured completely. Second, use
a temporal smoothing step; blending each particle’s shadow value
value with that from the previous frame offers reasonably alias-
free renders with good temporal coherence. We use Intel’s TBB
library [13] to sort our particles back-to-front relative to the camera
for compositing during rendering.

8 RESULTS

In Figure 3, we present a comparative result to Shi and Yu [23].
We show their results in Figure 4. For this test, we used 400,000
marker particles, 10,000 control particles, and roughly 10,000 vor-
tices. They report simulation times of 4 hours and 15 minutes to
generate a 1250 frame animation sequence, giving an average sim-
ulation time of 12.24 seconds per frame. Our result takes between
120-170 milliseconds per frame. Faster CPUs, multi-core proces-
sors, may account for some of this performance difference. Their
timing results also do not include render times, which we do con-
currently to our simulation. As expected, we do not display the



Figure 4: Horse shape matching animation from Shi and Yu

same visual fidelity of the Shi and Yu result. In terms of interactiv-
ity, however, our framework is far more suitable for games, or rapid
prototyping before rendering a complex scene. Moreover, some
difference in quality is due to our simple but efficient rendering al-
gorithm, which could be replaced with a higher quality version if
needed.

We present a sequence using an animated target mesh in Figure
5. Skeletal animation does not cause our simulation any signifi-
cant performance overhead; this scene uses between 120-170 ms
per frame with 400,000 marker particles. This scene demonstrates
the windy, turbulent motion of our smoke, in contrast to the lazy,
rolling smoke of Shi and Yu.

Figure 6 shows the target first taking the form of the letter psi,
then shifting to omega. This experiment is similar to that of Fattal
et al. [4]; we show theirs in Figure 7. Our result has the advantage
of having continuous turbulent motion even after the smoke has
reached the destination shape. Their simulation matches the shape
border more accurately, and offers somewhat more detail, while our
approach offers speed.

We used approximately 2 million marker particles for this test,
10,000 control particles and about 10,000 vortices. We take on av-
erage under 500 ms to simulate and render the morph scene per
time step. We render the scene simultaneously on the GPU as we
simulate the next frame; render time is always dominated by the
simulation time. We list detailed timing numbers in Table 1. Our
test machine has a 4 core 8 thread i7 CPU, with a GeForce 570
GPU. Fattal et al. report their simulation to take about 10.6 seconds
per time step on a Pentium IV, with several time steps per frame,
for a total time of 35 minutes of computation time per second of
animation.

In contrast to prior work, our simulation steps are usually with
linear, parallel operations. One of the most expensive steps is
framework is our NlogN depth sorting of the particles for render-
ing; however, this is not part of our simulation time. Our particle
evaluation and update are done with simple, parallel, additive SIMD
operations.

We do not use expensive pressure solving steps characteristic
of previous Eulerian methods. Moreover, previous particle-based
methods often use spatial search structures such as uniform grids or
KD-trees, while our operations demonstrate coherent, often linear
memory access patterns. Our novel direct evaluation scheme for
vortex particles with finite radius replaces the dozens, or more, of
iterations in an Eulerian linear solver. Our interactive frame rate is
not due simply to increases in computing power, but a novel com-
bination of efficient simulation steps. For instance, Fattal et al. re-
quire 35 minutes per frame of animation, and if we are targeting a
30 FPS simulation, we require 15 seconds per second of animation

Figure 5: A smoke creature formed from an animated target mesh

Module Time (ms) Time (%)
Evaluate Marker Density 102 21%
Evaluate Control Particles 82.6 17%
Advect Marker Particles 117 24%
Redistribute Marker Particles 36.4 7%
Depth Sort 127 26%
All Other Operations 23 5%
Total Time 488 100%

Table 1: Timing results for the letter morph sequence

for our similar test. This is about a 140x speed increase; assuming
single-threaded performance increase of 5x and a 4x improvement
from threading, this is a relative increase of 7x. In comparison to
Shi and Yu, we require about 4.5 seconds per second of animation,
while they require roughly 375 seconds. Given a 20x increase in
processing power, this is a relative improvement of about 4x.

Table 2 gives a breakdown of the key parameter values we use for
the smoke creature sequence. Many parameter values work well for
scenes of the same size. For instance, the size of the dynamically
generated grids, such as the velocity grids, and particle potential
fields, are fairly insensitive. However, too few cells will undersam-
ple thin, high-frequency features. Undersampling will cause target
particles to miss these thin mesh features. Additionally, the number
of target particles must be sufficient to resolve all areas of the target
mesh.

It is crucial to choose an appropriate value for S, the global at-
traction strength parameter. An excessively high S will overpower
the turbulent detail velocity; points will rush to their targets quickly.
Conversely, with S too low, the smoke will be sluggish and will
not be able to match a moving shape. Additionally Credist , the
number of redistributions, strongly affects the appearance of the
scene. Finding a good attraction strength is a matter of lowering the



Figure 6: Morph sequence

Symbol Parameter Value
M Number of marker points 400000
N Number of control/target points 10000
rm Marker particle radius 0.01
rc Control particle radius 0.01
Sa Global attraction strength 30
d Attraction velocity damping 0.3

Mean vortex radius 0.5
Mean vortex magnitude 4

Credist Marker particle redistribution iterations 400000

Table 2: Key parameter values for the smoke creature scene

strength parameter if the points move too quickly, and vice-versa.
The number of redistributions parameter can also be adjusted by in-
spection: choose an initial value, and increase if the smoke escapes
the mesh too easily. These two sensitive parameters are worth not-
ing for tuning.

Artists must choose radii for control and marker particles for
evaluating particle potential fields (described in Section 4.1 and
Section 4.4). Setting a narrow size for the control particles allows
for sharp detail in the shape matching, and forces marker particles
to areas closer to the mesh. Conversely, setting larger radii for con-
trol velocity produces a smooth control velocity field. Finding an
appropriate size is easily done by adjusting the size gradually, as
the simulation runs; first choose a large size and then reduce it until
thin features are visible.

Target control in itself provides a tunable high-level parameter,
eliminating the need for particle clouds or force fields. The typical
workflow for creating a scene would largely be in choosing a tar-
get mesh, and using traditional animation tools to manipulate the
mesh itself, rather than tuning individual control parameters. We
gave some advice about how to tune the most sensitive parameters:
particle size, attraction strength, and number of redistributions. Re-
maining parameters do not strongly affect the simulation and can
be left at default settings.

9 DISCUSSION AND FUTURE WORK

We have presented a paper that provides interactive fluid control for
artistic effect. Since our work is novel in that it allows artists real-
time control over fluid simulation, we would like to design a test
framework to solicit feedback from technical artists. We would like
to investigate the benefits of target control and interactive control
versus other prior control methods.

It is worth discussing briefly some reasons why our results may
lack detail when compared to previous methods. Our focus on per-
formance has led us to use a simplified control framework. We also
prefer conservative simulation detail: our velocity fields are on the

Figure 7: Morph sequence of Fattal et al.

order of twenty thousand cells, particle counts in the low millions.
In film production, artist may often employ particle counts in the
hundreds of millions or more. Although our system is scalable, we
choose to use particle counts in the millions, as real-time perfor-
mance becomes infeasible with larger counts, particularly due to
rendering times. More particles would, however, increase the qual-
ity of results.

One non-physical aspect to our work that could cause noticeable
or undesirable behaviour is the non-negligible level of divergence
in our control velocity field. Divergence is undesirable because it
may cause the smoke to spread out, and later merge back together;
this gives an uneven motion. In practice, we do not detect any vi-
sual artifacts due to divergence in the control field. Furthermore,
the smoke is always guaranteed to arrive at the target exactly, and
ensuring the target particles are spread out is enough to guarantee
the resting position of the smoke will be spread out. A possible
solution to the problem of intermediate divergence is to apply a
pressure projection to the control velocity field; although simple to
implement, the performance cost of adding a pressure solve would
be significant, and lead to less interactive simulations.

We have specifically focused on a different style of animation
than previous methods. Our simulations feature windy, highly en-
ergetic turbulence as opposed to the gentle motion in previous ap-
proaches. This is a deliberate choice, as it works well with our
simple marker particle redistribution scheme. In our tests, when we
lowered the speed of the smoke, the particles would not stray out-
side the boundaries of the target shape as quickly. Fewer particles
outside the boundary meant our system would redistribute fewer
smoke particles throughout the shape, and the simulation would ap-
pear clumpy and unbalanced. We do not simulate the buoyant, lazy
smoke in the style of Fattal and Lischinski, instead offering faster
and more energetic motion with shorter simulation times.

Additionally as we mentioned in Section 8, compared to other
methods, our simulations do not match the target boundaries as pre-
cisely. Because we do not include boundary conditions, the shape
edges are often chaotic and turbulent. In the future, we might inves-
tigate the advantages of implementing simple boundary conditions
to contain the smoke is near to the target shape. One simple fast
implementation of boundary conditions is to use a signed distance
test to generate a repulsion force from nearby objects; this would
not significantly impact performance, although it would add some
divergence to the particle velocity fields, giving a less pleasing ef-
fect. Other techniques for implementing boundary condition such
as the panel method, as described by Park and Kim [18], bear in-
vestigation as fast and high quality boundary effects.

Finally, the divide between base velocity and turbulent velocity
sometimes causes an appearance of smoke motion without large-



scale turbulence. The base velocity is entirely turbulence-free, and
when the simulation drives motion more from the base velocity than
the turbulent velocity, it does not appear to be fluid-like. It may be
interesting in future work to look into other directions to approach
bulk velocity, such as using a hybrid method, by generating a bulk
velocity field using a Eulerian approach similar to Fattal et al. [4], or
by replacing the bulk velocity with some method of directed flow
from a purely Lagrangian vortex particle frame; that is, to direct
vortex particles using a modified vortex kernel or a carefully placed
arrangement of vortices.

10 CONCLUSION

We have presented a method of target control using Lagrangian vor-
tex particles, combined with a particle-based control velocity, tai-
lored for smoke simulation. Our unique shape matching, combined
with vortex fluid motion, gives an efficient basis for fluid control.
Our specific contributions are this system of fluid target control de-
rived from a separation of bulk and detail velocity that accurately
matches a target shape; a novel a driving force from a correspon-
dence between source and target particles, which is simple to im-
plement, fast, and accurate; and an efficient direct velocity-from-
vorticity computation for compact vortex kernels.

Our simple and effective methods of simulating smoke gives us
a near-interactive simulation for smoke shape matching. We have
attempted with this work to give artists and animators a fast control
scheme with a high level of abstraction, when designing visual ef-
fects with a fluid simulation system. This is one type of application
of fluid control; ultimately there are many possible such applica-
tions and this work is a small step towards complete artist control
over fluid effects and other natural phenomena.
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