
Synthetic Tree Models from Iterated Discrete Graphs
Ling Xu∗ David Mould†

Carleton University, Canada

ABSTRACT

We present a method to generate models for trees in which we first
create a weighted graph, then places endpoints and root point and
plan least-cost paths from endpoints to the root point. The collec-
tion of resulting paths form a branching structure. We create a hier-
archical tree structure by placing subgraphs around each endpoint
and beginning again through some number of iterations. Power-
ful control over the global shape of the resulting tree is exerted
by the shape of the initial graph, allowing users to create desired
variations; more subtle variations can be accomplished by modify-
ing parameters of the graph and subgraph creation processes and
by changing the endpoint distribution mechanisms. The method is
capable of matching a desired target structure with a little manual
effort, and can easily generate a large group of slightly different
models under the same parameter settings. The final trees are both
intricate and convincingly realistic in appearance.

Keywords: Procedural modeling, tree modeling, natural phenom-
ena, geometry synthesis.

Index Terms: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling —Curve, surface, solid, and object
representations

1 INTRODUCTION

Trees are commonplace in the natural world, and tree models often
appear in the virtual worlds of computer games and films. To ease
the burden on digital artists, procedural modeling methods have
been devised, especially for complicated subjects such as trees. The
key elements of tree modeling are the branching structures and the
complex shape of individual branches.

This paper presents a procedural method to model trees, based on
finding least-cost paths through a weighted graph, a modeling idea
previously introduced by Xu and Mould [20, 21]. The essential idea
is to create a graph with random edge weights, then plan least-cost
paths from a single root node to destination nodes. The resulting
paths form a tree. By varying the graph shape and edge weights,
the method can create a wide range of tree models.

This paper builds on the basic idea to create sequences of graphs,
using path planning to link endpoints in all graphs with a single root
node. Our method can create realistic, highly intricate tree models
with quite direct user control over the final tree shape through spec-
ifying the shapes of the graphs in which the tree is built.

The paper is organized as follows. Following the introduction,
we review some previous work in tree modeling. In section 3, we
describe the algorithm. Results and evaluation are given in section
4. Finally, we conclude and discuss future work.

2 PREVIOUS WORK

Tree modeling has a long history in computer graphics. The
most notable modeling approach is the parallel rewriting gram-

∗e-mail: lxuc@scs.carleton.ca
†e-mail: mould@scs.carleton.ca

mar called L-systems, used for plant forms and even entire ecosys-
tems [12, 7, 4]. General control over grammar-based methods is
offered by Talton et al.’s work [15], although the sampling process
can be very time-consuming. The space colonization method of
Runions et al. [14] offers a biologically motivated alternative with
control over global shape, exploited by Palubicki et al. [10] for self-
organizing tree modeling; here, the tree growth process follows the
competition of branches for resources (e.g., light and space) with
internal signaling mechanisms based on L-systems. The resulting
forms can be controlled interactively, e.g., by sketching.

Geometric methods (e.g., that of Weber et al. [17]) explicitly
vary geometric quantities such as segment length and angles; gen-
erating models involves adjusting a huge number of parameters. An
alternative is to use input images to drive tree creation [13, 8, 16]:
such methods can attain extremely high quality, although the need
to supply input images is a drawback.

The basic idea of path planning [3] for tree modeling is due to
Xu and Mould [20, 21], who exploited path planning for general
modeling of dendritic natural phenomena including trees, coral, and
lightning. In their work, the graph containing the paths is a 2D
lattice or 3D grid. The regular lattice imposes substantial penal-
ties: the resolution of the model is limited by the spacing of the
graph, and hence small-scale features (e.g., tiny twigs) need a high-
resolution graph, incurring immense memory cost.

To enhance the control in tree modeling, sketch-based methods
are used to provide clues of crown shape or main branches [5, 9,
2, 18]. Based on L-systems, Ijiri et al.’s system [5] controls the
growth direction of a tree by user-drawn strokes. However, to
model a complex tree would require a lot of user interaction. Ok-
abe et al. [9] build tree models using freehand sketches with the
assumption that branches are spreading to maximize the distance
between each other. In Chen et al.’s method [2], Markov random
fields are used to infer the branch shape from the drawn sketches.
Both methods use examples from a library of tree templates for
branch propagation, which release the burden on user sketching.
With similar stochastic optimization, Wither et al. [18] use a priori
botanical knowledge to infer the branch shapes from user sketched
crown silhouettes at different scales, and can generate realistic tree
models with good overall controls.

Compared to the above methods, scanning methods place more
emphasis on creating models that conform to real trees, with point
clouds of tree data by 3D scanning. Xu et al. [19] build a tree
skeleton by connecting neighborhood points to form a graph, where
a single-source shortest path algorithm is applied to reconstruct
branches. Bucksch et al. [1] extract a the tree skeleton by subdi-
visiding the point cloud. Livny et al. [6] apply global optimizations
to reconstruct multiple overlapping trees simultaneously. Scanning
methods can achieve high quality of tree models, but are not in-
tended to model novel trees.

3 ALGORITHM

We build on the method of Xu and Mould [20], who created least-
cost paths through a regular lattice connecting multiple endpoints to
a common root in order to build general tree-like structures. Since
they used a regular lattice, they little investigated the task of build-
ing graphs; a significant portion of this paper is devoted to defining
the graph shapes, which have an enormous impact on the shape of

the final tree. The earlier work also did not pay much attention to
the details of endpoint placement. We propose an iterative method
whereby successive stages of endpoints are distributed within sub-
graphs, resulting in a high degree of visible structure; we discuss
the details of the method next, to be followed by examples of our
synthetic tree images.

3.1 Basic Algorithm
We construct a graph and find the shortest paths from multiple end-
points to a common root point. The collection of the paths form
the tree model. The basic algorithm can be decomposed into the
following steps.

1. Build a graph and set edge weights randomly.

2. Choose a node to be the root point and some nodes as end-
points of the structure.

3. Find least-cost paths from the endpoints to the root.

4. Create geometry around the path segments and render the re-
sulting model.

Xu and Mould used a graph consisting of a regular lattice, but the
resulting paths suffered from lattice artifacts. We propose instead
an irregular graph, obtained by creating a Poisson disc distribution
of nodes within a designated volume; nodes are connected by edges
whenever they are sufficiently close together, and a random weight
is assigned to each edge. Figure 1 contrasts regular and irregular
graphs: use of an irregular graph avoids lattice artifacts without
necessitating higher resolution.

Using a single graph produces non-hierarchical structures, some-
what resembling trees but overly simple. In the next section, we
describe how we create a succession of graphs attached to the first,
whereby we can create more elaborate and convincing trees.

Figure 1: A regular and an irregular graph.

3.2 Iterated Structure Building
A tree has a recursive structure where large branches grow from
the main trunk and smaller twigs develop from branches. Our al-
gorithm creates the hierarchy explicitly: iteratively extending the
original graph by adding subgraphs at the tips of earlier branches.

The overall process operates as follows. A base graph shape is
defined by a composition of geometric primitives, with the graph
itself constructed by distributing nodes throughout the volume and
connecting nearby nodes with edges. Endpoints are then placed

and a preliminary tree model is created by connecting the endpoints
with the root using least-cost paths. Subsequently, for level i > 1,
we create a subgraph around each endpoint from level i− 1, again
defining a volume and distributing nodes and endpoints within it.
(Details of the subgraph creation are given in section 3.3.2.) The
endpoints are connected to the structure obtained in level i− 1,
producing a new structure. The process repeats for some number
of levels, say 4; depending on the desired complexity of the final
structure, the number could be higher.

Maketree
Global parameters:
subgraph resolution k (number of nodes)
node linking distance d
subgraph shrinking parameter a (a < 1)
subgraph sizing angle α

Note, a node N has property~x, spatial position.

Arguments:
V (graph volume),
R (root node),
b (branching factor),
K (number of nodes in graph),
r (size),
L (remaining lifespan)

Output:
T , a list of all path segments making up the tree.
1. Create the graph for the current volume:
1A. G← /0.
1B. Find a random location ~p.
1C. If ~p is outside V , reject ~p.
1D. For all nodes N ∈ G, if |~p−N.~x|< d reject ~p.
1E. If ~p not rejected, create node m with m.~x = ~p and set G ←
{G,m}.
1F. Repeat 1B to 1E while |G|< K.
1G. For all pairs of nodes n,m ∈ G, create a connecting edge if
|n.~x−m.~x|< d.
1H. For all edges, set random weights.
2. Repeat for b endpoints e:
2A. Set e.~x← random position in V .
2B. For all nodes n∈G, create an edge from n to e if |e.~x−n.~x|< d.
3. Create paths for all endpoints e; before starting, initialize T ← /0.
3A. Find the least-cost sequence of edges P from e to R.
3B. For all edges E ∈ P\T,T ←{T,E}.
4. Recurse on all endpoints:
4A. For each endpoint e:
4B. ~vg = (e.~x−R.~x)/|e.~x−R.~x|.
4C. define V as the portion of the sphere centred at e.~x with radius
r that lies within angle α of ~vg
4D. If L > 0, T ←{T, maketree(V,e,b,k,a∗ r,L−1)}
5. Return T .

Figure 2: Pseudocode for tree construction.

Pseudocode describing the building process is given in Figure 2.
While above we described the process in an iterative fashion, and
our implementation is likewise iterative, we found it more conve-
nient to present pseudocode for a recursive implementation, echo-
ing the visual recursion of the the final structure of the tree.

The preceding gives the process to construct the schematic of the
model; we then interpret the paths as geometry, placing a cylinder
around each edge in the structure. The thickness w of each cylin-
der at level i is decided by the distance from the segment to the
branch tip, written d′: w = (d′)ζ /(i+ 1); larger values of ζ make
the branches taper more quickly. Typically we use ζ = 0.3. We can

render the structure in a schematic fashion by directly drawing the
cylinders as black regions on a white background (used in numer-
ous visualizations throughout the paper); we can also render the
geometry photorealistically, and employed POV-Ray [11] for that
purpose in this paper.

Figure 3 illustrates the method. The initial graph is a composi-
tion of a hemisphere and a cylinder. Endpoints are randomly posi-
tioned in the hemisphere, and paths are planned from the root to the
endpoints. Then, a subgraph is created for each endpoint; we illus-
trate an example subgraph in the lower left. The lower right figure
shows the structure once the second level has been completed.

Figure 3: Illustration of the iterative tree building process.

To capture the hierarchical structure of real trees, we use the con-
cept of lifespan. Each endpoint is assigned a lifespan value L; end-
points in a subgraph will have a lifespan strictly smaller than the
parent endpoint’s lifespan, usually by taking Li+1 = Li − 1. No
subgraph is created if an endpoint’s lifespan reaches zero. The sub-
graph shape and size can depend on the lifespan of the subgraph
root.

We used our method to generate the structures shown in Fig-
ures 4 and 5. Figure 4 shows an elaborate branching structure ob-
tained by starting with six endpoints in a sphere and continuing
for four levels. The resulting form is somewhat abstract, but its
intricacy is compelling. By imposing more structure on the ini-
tial level, we can create structures more closely resembling trees,
shown in Figure 5; here, the initial shape is a mushroom-shaped
cylinder plus hemisphere, reflected in the overall shape of the final
tree. The top view reveals the desired horizontal anisotropy of the
tree, while the close view allows better appreciation of the detailed
small-scale structure.

3.3 Variations from parameters

The three main mechanisms to modify the shapes of the synthetic
trees are initial graph shape, subgraph shape, and lifespan. The ini-
tial graph shape has a profound effect on the overall shape of the
tree. Logic governing subgraph shape controls how the tree devel-
ops at levels beyond the first, and affects the general appearance
of the tree in a more subtle way. Finally, lifespan can introduce
additional variety by altering individual branch development. We
discuss each of these in more detail below.

Figure 4: A fractal dendrite in 3D.

3.3.1 Graph shape
The graph shape in the first level controls the overall shape of the
resulting model. We describe two methods to obtain graph shape:
combination of geometric primitives and user sketching. In the for-
mer, primitives such as cylinders, spheres, and ellipsoids are man-
ually arranged into an approximation of the desired shape. In the
latter case, we use a user sketch to infer a volume in which we
distribute nodes. Many sketch-based modeling possibilities exist,
which we have little explored in the present work; we demonstrate
the feasibility by showing trees derived from the volume enclosed
by the surface of revolution of a user-sketched stroke.

Figure 6 shows three different trees along with their correspond-
ing graph shapes. The final model does not strictly match the orig-
inal graph shape owing to the structures added in levels beyond the
first, but the correspondence is clear. More specific results are also
possible: Figure 7 shows an example of modeling an irregular tree,
imitating a photograph. The graph was composed and endpoints
selected manually to match the desired outcome.

Sketch-based modeling provides more flexible and direct user
control than assembling geometric primitives. Here, we provide a
glimpse of how sketching can be used with our method, allowing
users to indicate a volume of revolution. A user draws a curve with
reference to an axis, and the sketched curve will be rotated around
the axis to achieve a 3D volume of revolution. Then the graph nodes
are placed in the enclosed volume and connected with edges. Fig-
ure 8 shows some examples of results obtained from sketching in-
teractions. We can see the ease with which more complex volumes
can be defined; as before, the shape of the initial graph is the most
significant contributor to the global shape of the final tree model.

3.3.2 Subgraph creation
We require users to specify the graph shape for the first level, pro-
viding control over the tree’s large-scale appearance. While sub-
graph shapes for subsequent levels can in principle also be user-
defined, in practice it is tedious to do so, so we compute the sub-
graph volumes procedurally, as follows.

We use a cone-shaped subset of the sphere as our subgraph,
where the cone’s tip is placed at the root of the graph. First, we
compute an orientation ~vg for the subgraph by taking the normal-
ized vector from the root of this subgraph to the root of the previous
subgraph. The volume is defined as all points whose vector from the
root lie within an angle α of the vector~vg. The volume is populated
with nodes in the same way as the initial graph, and the subgraph is
formed by linking nodes closer together than a minimum distance
d.

The size of the subgraph sphere deceases as we progress to
higher levels: the parameter a, where usually a < 1, is the ra-
tio between the sizes of spheres at two successive iterations. Fig-
ure 9 shows two trees obtained with different a. The left tree, with
a = 0.7, demonstrates a clear hierarchical relationship in branch

Figure 5: A synthetic tree created with four iterations.

Figure 6: Structures obtained by different shapes of graph.

Figure 7: A tree with a tilted trunk. Left: initial graph; middle: inspira-
tional photograph; right: our model.

Figure 8: Structures obtained by user sketches. Above: user
sketched curves with rotation axes (dashed lines); below: resulting
structures.

lengths. The branch segments closer to the trunk are long and those
near the tips are short. The tree in the right has a constant subgraph
size (with a = 1) at each level.

To produce paths with long-term curvature (similar to willow
branches, for example), we proceed segment by segment. We have
previously described the subgraph orientation~vg, obtained by find-
ing the vector from the subgraph root to the preceding root; now,
we apply a consistent transformation to~vg at each level. When the
transformation is a rotation about the horizontal, the overall branch
curves upward or downward. Figure 10 shows an example of struc-
tures obtained by the above method, with four iterations applied.

Figure 9: Right: tree with a = 0.7; left: tree with a = 1.

Figure 10: Curving branches from progressively rotating subgraphs.

Note that this particular procedural approach to subgraph shape
is not the only possibility, although it is a convenient option that
we rely heavily on in this paper. Other possibilities include the fol-
lowing: different subgraph shapes, e.g., inverted cones; different
mechanisms for computing the orientation, e.g., using random di-
rections or a fixed vertical orientation; or adjusting the direction,
shape, or size of the subgraph based on environmental information.
We will show examples of some of the possibilities in section 4.

3.3.3 Lifespan
Previously we had lifespan dropping at a constant rate, i.e., Li+1 =
Li − 1. However, this produces very uniform trees, where all
branches are approximately the same length. If we allow the lifes-
pan parameter to vary more widely, we can produce more irregu-
lar trees. One possibility is to use a distribution of possible decre-
ments: for example, we can assign a 30% probability of terminating
a branch and a 70% chance of instead decrementing its lifespan by
a random number in the range (0,L), where L is its current lifespan.

Figure 11 shows some examples obtained by using the above dis-
tribution for lifespan decrement. The resulting trees have a striking
irregularity and seem more lively and natural than the trees gener-
ated with fixed lifespan decrement. However, the approach does

not reliably generate models of this caliber. Further investigation of
lifespan is a direction of future work.

Figure 11: Irregular bush and tree obtained by use of lifespan.

4 RESULTS AND EVALUATION

The elements of our tree modeling algorithm, including edge
weights, graph shape, and node placement, provide a wide range of
results. This section shows a cross-section of results and provides
comparisons to real photographs and to previous methods. In Fig-
ure 12, synthetic tree images are compared with photographs. Our
trees have similar structures to the photographed trees: the same
tree crown shape, a few thick main branches, and a large volume
filled with twigs yet with natural-seeming irregularities and gaps.
Overall, it is difficult to distinguish between the real and synthetic
trees from these images, and we judge that our method is quite ef-
fective.

Figure 12: Left: our black silhouette tree model; right: real photo-
graph.

Due to the involvement of random elements – particularly ran-
dom edge weights and random endpoint placement – we can gen-
erate similar but distinct trees by keeping parameter settings fixed.
Figure 13 shows three trees of the same type. In each case, the ini-
tial graph is composed of a cylinder and a hemisphere, but each tree

has a slightly different structure while keeping large-scale charac-
teristics in common, such as the crown size and the branch density.

Figure 13: Three trees of the same type.

By varying graph shape and available parameters, we can cre-
ate a wide variety of trees; examples are shown in Figure 14. We
chiefly varied initial graph shape to generate these examples; some
of them also used custom graph shapes for the subgraphs. A list
of parameter settings for these trees can be found at the end of this
paper.

In addition to the wide variety of trees shown, our algorithm can
be used to model the root system. Figure 15 shows two trees with
different shapes of root systems; the roots were created in a graph
bounded by a hemisphere. The taproot is a path from one single
endpoint to the root point. The lateral roots of both trees are ob-
tained by placing endpoints randomly around the taproots. This is
the same method used to create the structure shown in Figure 4.

Figure 15: Two trees with different root systems

Compared to existing tree modeling methods, our method has
its strengths. One key element we provide is the ability to model
structures with irregular branches. In the case of geometric based
methods, the more irregular the object is, the more parameters are
needed. However, in our method, the irregular paths are the byprod-
uct of path planning through a randomly weighted graph. Without
extra effort, our method generates irregular yet globally control-
lable structures.

Specific comparisons to previous methods are shown in Fig-
ures 16, 17, and 18. Based on these comparisons, our method is
competitive. To our knowledge, robust metrics for tree quality do
not exist, so we discuss the visual comparison in a general way be-
low.

Figure 16 shows our tree model compared with a tree model gen-
erated by Xu and Mould [21]. Compared to their model, our result
is much more detailed, with many more branches and with branches
of different sizes. The use of iterated graphs allowed us to create

small features without an explosion in overall memory usage. Fig-
ure 17 compares our tree model to an example by Neubert et al. [8]
created using a particle tracing method. Both have realistic visual
effect. However, in general, particle tracing methods have difficulty
enforcing large-scale coordinated movement of the particles so that
the desired shape is formed; in this case, and that of Tan et al.,
extra information in the form of input images provides the needed
large-scale coordination. Our method does not require real photos
and hence allows the user to skip that step, potentially providing
more control over the output tree shape. Figure 18 shows our tree
model and a tree model by the self-organizing method of Palubicki
et al. [10]. Our result has a similar global shape and branching
structure as their model. However, we characterize it as less regu-
lar: its branches are more crooked and in the projection to 2D the
gaps are more unevenly distributed. Whether this is an advantage
or not depends on the application; users might sometimes prefer the
irregularity in pursuit of certain effects (for example, in creating a
haunted forest).

Our method has some limitations as well. While we are free
from lattice artifacts and hence can create convincing tree models
with lower graph resolution, the feature resolution is still tied to the
node spacing and hence the approach is fairly memory-intensive.
Detailed control over tree shape is provided by endpoint placement,
but we care about the path rather than the tip position. Finally,
while we have argued that the irregularity of the resulting models
is a strength of our approach, the models are still overall more reg-
ular than we would prefer; our experiments with lifespan, though
promising, are still in their infancy. Increasing the irregularity of
the output models is an important direction for us. We close this
section by providing parameter and timing information for some
of our models. Timing information and statistics for selected tree
models appears in Table 1. Smaller trees could be completed in a
few seconds; our largest tree, with about 30k endpoints in graphs of
over 300k nodes, required about 30 seconds.

In all cases, timing results are with respect to a 3.0 GHz CPU
with 3.0 GB RAM. In general, the time required is linear in the
total number of nodes in all graphs combined, given a suitable spa-
tial subdivision scheme for proximity queries in graph construction.
The parameter information for the trees in Figure 14 is given in Ta-
ble 2.

Figure 16: Left: a model created by Xu and Mould; right: our tree
model.

Tree number of graph nodes number of endpoints timing
Figure 12(top left) 351810 34740 32.4s

Figure 16 84755 3732 4.5s
Figure 18 207458 9330 20.0s

Table 1: Timing and construction data for selected models.

Figure 14: Different types of trees.

Figure 17: Left: a model from Neubert et al.; right: our tree model.

Figure 18: Left: a self-organizing tree model; right: our tree model.

5 CONCLUSIONS AND FUTURE WORK

We demonstrated that procedural tree modeling based on path plan-
ning is capable of producing elaborate and realistic trees. The gen-
eral shape is decided mainly by the initial graph shape and partially
by the shapes of subgraphs added in later stages. Wide variations
are possible, producing many different shapes of trees, some of
which are chronicled in this paper. Since the algorithm involves
random edge weight and node and endpoint placement, many dif-
ferent but similar models can be constructed from the same param-
eter settings. In most applications general shape control is consid-
ered important, so we provide large-scale control through specify-
ing graph shape. Optionally, the finer structure can be guided by
specifying graph shapes to use in later iterations; we provide de-
faults which provide generically appealing results.

We have two main directions for future work: increasing the au-
tomatic level of irregularity of our trees, and increasing the degree
of user control over the output. Our concept of branch lifespan
seems like a promising approach for increasing irregularity; we can
explore different distributions of possible lifespans, perhaps in a
coordinated way across multiple endpoints. Further exploration of
endpoint distributions is another possible direction. For user con-
trol, we believe that sketching can feasibly be combined with the
current approach; users might place endpoints or sequences of end-
points with an interactive tool, or paint maps of greater or lesser
edge weights. We have begun to investigate sketching as a means
of controlling overall graph shape, and this would seem to be rich
ground for further exploration.

ACKNOWLEDGEMENTS

We thank Dr. Prusinkiewicz for his comments and advice. We also
thank NSERC and the GRAND NCE for funding support.

REFERENCES

[1] A. Bucksch, R. C. Lindenbergh, and M. Menenti. Skeltre - fast skele-
tonisation for imperfect point cloud data of botanic trees. In 3DOR’09,
pages 13–20, 2009.

tree level i graph shape b note timing
1 cylinder and portion of sphere with α = 0.3π 12

6.4sa 2,3 α = 0.3π 3
4 α = 0.3π 6
1 cylinder and portion of sphere with α = 0.25π 10

7.0sb 2 α = 0.25π 5
3 α = 0.25π 10
1 cylinder and portion of sphere with α = 0.5π 30

subgraphs of level 2 - 8 use γ = 0.12π 13.4sc 2, 5 partial sphere (α = 0.25π) 2
3-8 partial sphere (α = 0.25π) 1

1 cylinder and portion of sphere with α = π 2
5.6sd 2 α = 0.4π 10

3, 4 α = 0.4π 6
1 cone 40

3.3se 2 - 4 α = 0.25π 1 subgraphs of levels 2 - 4 use γ =−0.05π

5 α = 0.25π 3 At final level, build subgraphs around endpoints from all previous levels
1 portion of sphere with α = 0.5π 10

subgraphs of level 2 are oriented in the negative vertical direction 7.5sf 2, 3 α = 0.5π 4
4 α = 0.3π 6
1 cylinder and cone 32

g 2 - 7 α = 0.25π 1 subgraphs in levels 2 - 7 use γ = 0.03π

3.0s8 α = 0.25π 8 At final level, build subgraphs around endpoints from all previous levels
1 tilted cylinder and hemisphere 8

2.1sh 2 α = 0.5π 6
3 α = 0.5π 12

i
1 cylinder and portion of sphere with α = 0.7π 11

0.7s
2,3 partial sphere (α = 0.45π) 6

j
1 cylinder and cone 16

3.2s2,3 cone 8
1 portion of sphere with α = 0.3π 13

4.2sk 2,3,4 α = 0.2π 2
5 α = 0.3π 4
1 cone 16

subgraphs of level 2 use γ =−0.03π 1.3sl 2 α = 0.25π 1
3 cone 10

Table 2: Parameters for the models in Figure 14

[2] X. Chen, B. Neubert, Y.-Q. Xu, O. Deussen, and S. B. Kang. Sketch-
based tree modeling using Markov random field. ACM Trans. Graph.,
pages 109:1–109:9, 2008.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to algorithms. MIT Press, 2009.

[4] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and
P. Prusinkiewicz. Realistic modeling and rendering of plant ecosys-
tems. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’98, pages 275–286,
1998.

[5] T. Ijiri, S. Owada, and T. Igarashi. The sketch l-system: Global control
of tree modeling using free-form strokes. In Smart Graphics, pages
138–146, 2006.

[6] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-Sana. Au-
tomatic reconstruction of tree skeletal structures from point clouds.
ACM Trans. Graph., 2010.

[7] R. Měch and P. Prusinkiewicz. Visual models of plants interacting
with their environment. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’96,
pages 397–410, 1996.

[8] B. Neubert, T. Franken, and O. Deussen. Approximate image-based
tree-modeling using particle flows. ACM Trans. Graph., 2007.

[9] M. Okabe, S. Owada, and T. Igarashi. Interactive design of botanical
trees using freehand sketches and example-based editing. In ACM
SIGGRAPH 2006 Courses, SIGGRAPH ’06, 2006.

[10] W. Palubicki, K. Horel, S. Longay, A. Runions, B. Lane, R. Měch,
and P. Prusinkiewicz. Self-organizing tree models for image synthesis.
ACM Trans. Graph., pages 58:1–58:10, 2009.

[11] Pov-Ray Org. http://www.povray.org/, 2011.
[12] P. Prusinkiewicz, M. James, and R. Měch. Synthetic topiary. Com-

puter Graphics, 28:351–358, 1994.
[13] Y. Rodkaew, P. Chongstitvatana, S. Siripant, and C. Lursinsap. Particle

systems for plant modeling. In Plant Growth Modeling and Applica-
tions, pages 210–217, 2003.

[14] A. Runions, B. Lane, and P. Prusinkiewicz. Modeling trees with a
space colonization algorithm. In Eurographics Workshop on Natural
Phenomena, 2007.

[15] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and V. Koltun.
Metropolis procedural modeling. ACM Trans. Graph., 30:11:1–11:14,
2011.

[16] P. Tan, G. Zeng, J. Wang, S. B. Kang, and L. Quan. Image-based tree
modeling. ACM Trans. Graph., 2007.

[17] J. Weber and J. Penn. Creation and rendering of realistic trees. In
Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’95, pages 119–128, New York,
NY, USA, 1995. ACM.

[18] J. Wither, F. Boudon, M.-P. Cani, and C. Godin. Structure from silhou-
ettes: a new paradigm for fast sketch-based design of trees. Comput.
Graph. Forum, 28(2):541–550, 2009.

[19] H. Xu, N. Gossett, and B. Chen. Knowledge and heuristic-based mod-
eling of laser-scanned trees. ACM Trans. Graph., 2007.

[20] L. Xu and D. Mould. Modeling dendritic shapes - using path planning.
In GRAPP (GM/R), pages 29–36, 2007.

[21] L. Xu and D. Mould. Constructive path planning for natural phenom-
ena modeling. In 3IA 11th International Conference on Computer
Graphics and Artificial Intelligence, pages 59–69, 2008.

