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Chapter 1

Introduction

The field of fluid simulation, even restricted to its applications in computer graphics,

is a vast and complicated subject. It has applications in films and animation, video

games, design, engineering, GIS, and many other areas. Fluid phenomena include

smoke, water, dust clouds, explosions, fire, and even the motion of nebulae and gas

giants. Traditionally we consider fluid simulation to be hard to control and complex,

however in many cases fluid systems are highly ordered, and even simple to compute.

The task of an implementation of a fluid system in the context of computer games

and animation, is to control and shape the physics of the simulation to achieve a

specific desired result. Thus control is a coupled problem to simulation; it is essential

that animators tasked with rigging a particular explosion, or shaping a massive tidal

wave, can effectively use the simulator to get what they want.

The key problem we are addressing is targeted control of particle-based smoke

simulation for effect production. A particle for our purposes is a small point in space

with some associated attributes, such as velocity. Our problem, then, is to move a

large collection of these points, possibly numbering in the millions, towards a target

shape, which we represent by a triangular mesh. For instance, a cloud of smoke may

take the shape of a ghostly visage that appears in front of a character. This problem

can be difficult because physically based smoke simulation is founded on the solution

1
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of numerical equations, which govern how the fluid reacts to the current state. They

do not inherently allow for specific control such as this shape matching problem.

Thus, we must augment this physically based system with a control framework, to

direct the simulation towards a specific end result.

When designing a control framework for a fluid simulation, there are a few impor-

tant criteria. Without a high-level control system, the artist may have to manipulate

physical parameters and inject forces in many places to achieve a particular gust of

wind or shape. It becomes important, then, that a control system be intuitive and

easy to use; this can mean a higher level control abstraction than just a myriad of

physical parameters. Additionally, given that fluid systems are usually complex, and

potentially expensive to compute, it is important that both the simulation and the

control scheme the animators use are as computationally efficient as possible. Of

course, a third important measure is that the artist can achieve the effect he desires;

the control scheme must be effective. A final important criteria is that the control

system be gentle; when there is too much control applied to a fluid system, it loses

the appearance of being a fluid, and the realism and beauty that accompanies fluid

motion. Thus even if control is not entirely physically based, it must be subtle enough

that it appears to be realistic.

Instead of guiding the motion of the particles with artist-tuned forces, a useful

abstraction in designing a control system is to provide a target that the particles travel

towards. For example, a target density function, or mesh, can represent a person made

out of water or smoke. There are many examples of creatures, characters and objects

made up of fluid found in animation and movies, such as the the rivergod of Narnia [70]

or the galley made of smoke Gandalf blows through a smoke ring [16]. In these cases,

where the animator designs a scene around a shape, it is advantageous to represent

the control framework for the simulation based on the target shape itself; instead of

manipulating forces or parameters, an animator places a target mesh, animates it as
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though it were a character, and the control system will determine how to route the

fluid towards this destination.

Fluid simulation is traditionally split between two different viewpoints, called Eu-

lerian and Lagrangian, and each has a different representation of the fluid simulation

elements. In an Eulerian approach, the simulation elements are fixed in space; while

their values change over time, their locations do not. This often means fluid elements

are represented at the cell centers or faces of a fixed voxel grid. In a Lagrangian

frame, the simulation elements move; for example, we might form a cloud of smoke

or magical dust from tens of millions of particles. Particle-based approaches have the

advantage of being inherently adaptive; areas with more particles have more detail,

while empty areas can be ignored.

1.1 Overview

In our approach to targeted fluid control, we attempt to show that by splitting the

fluid flow in two, between a control flow field moves the smoke directly towards the

target, and a turbulent flow field adds the illusion of fluid motion, we can design an

effective and easy to use target-based fluid control system. Our proposed method is

divided into the following steps:

1. Particle initialization

� Emit smoke marker particles

� Initialize control particles inside any emitted smoke

� Initialize target particles inside the target shape, for new control particles

2. Compute the bulk control flow field (Chapter 3)

� Generate attraction force on the control particles
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� Compute control flow field from the control particles

3. Compute the turbulent vortex flow field (Chapter 4)

� Spawn vortex particles inside the smoke

� Evaluate vortex velocity field

� Update vortex vorticity vectors

4. Particle update

� Particle advection (Section 4.6)

� Smoke particle redistribution (Section 4.7)

1.2 Contributions

The specific contributions of this work are:

� A unique point-based shape matching algorithm based on point correspondence

� An efficient and parallel direct evaluation method for finite support vortex par-

ticles

� A method to combine vortex particles with a shape matching flow for targeted

smoke control

We present the work in the following order: we first introduce the problem, and our

approach, in this chapter. Next, we will discuss prior work related to fluid simulation,

fluid control, fluid rendering, and also signed distance fields, a useful data structure

when dealing with closed boundaries such as triangular meshes. In Chapter 3, we

present our target-based particle control algorithm, which generates the bulk flow field

driving the smoke to the destination. In Chapter 4, we describe our implementation
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of Lagrangian vortex particle simulation, and how we use it to generate our high-

frequency turbulence field. In Chapter 5, we discuss some results of this method, and

then we conclude in Chapter 6 with a brief discussion and ideas for future work.



Chapter 2

Previous Work

2.1 Fluid Simulation

Fluids in nature are a complex phenomena that has been studied often, and simulated

with various methods. There are many ways to describe fluid, for instance, a fluid can

have the form of a gas (e.g. air) as in Figure 1b, or a liquid, such as water in Figure 1a.

Smoke is often represented in simulation as a density function in space, while water is

usually characterized by a sharp interface between liquid and air. These two phases

require very different methods for simulation and rendering. For our purposes, we

are interested in simulating incompressible, slightly viscous smoke; we will describe

the properties of compressibility and viscidity below.

There are other properties of fluids that are relevant to simulation. We say a fluid

is inviscid if it is not affected by viscosity. Viscosity is the resistance of a fluid to being

deformed; highly viscous fluids such as thick syrup or tar appear somewhat elastic and

seem to keep a bit of their shape as they are stirred or otherwise perturbed. Fluids

can also be said to be compressible or incompressible; incompressible fluids have the

property that small parcels of fluid keep their density as they travel through the flow.

In graphics we are usually interested in incompressible fluids, as this means fluids

will not appear or disappear throughout the simulation. Fire and explosions are the

6



7

(a) Fluid in a liquid state. Image by Mark
Shaiken. Creative Commons.

(b) Fluid as a gas. Image by
Dave Mellors. Creative
Commons.

Figure 1: Fluid as a gas or liquid

result of compressible flow; however they can be approximated with incompressible

fluid simulation.

When trying to determine how the fluid behaves in its in environment, we must

use complex systems of equations. In the field of computer graphics and animation,

however, the most relevant are the incompressible Navier-Stokes equations:

∂u

∂t
= −(u · 5)u− 1

ρ
5 p+ ν 52 u + f (1)

and

5 · u = 0, (2)

a set of partial differential equations that hold throughout the fluid. How we might

solve these equations depends on how we store the fluid elements. Simulations that

store data at fixed locations in space, such at the cell centers or edges of a grid,

are typically called Eulerian simulations (see Figure 2a). Methods that allow the

simulation elements to move in space, for example, by tracking the movements of

point particles, are Lagrangian methods (see Figure 2b).
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(a) Eulerian view: uniform grid (b) Lagrangian view: point cloud

Figure 2: Eulerian vs. Lagrangian simulation. Eulerian simulations are charac-
terized by fixed simulation elements, while in the Lagrangian view the fluid
elements move with the simulation. Images © Michael Gourlay. Used with
permission.

Since our work is focused primarily on the control aspect of fluid simulation, we

first briefly discuss key works in the areas of fluid simulation, before describing more

exhaustively important works in fluid control. An interested reader can refer to the

excellent treatment of the subject of fluid simulation, with emphasis on the Eulerian

viewpoint, and the connection between the Lagrangian and Eulerian viewpoints, in

the books by Chorin and Marsden [11] and Bridson [7]. Bridson’s book takes on the

subject from a modern, graphics-focused, perspective. For further information on the

field of vortex simulation, the reader can refer to the excellent book by Cottet and

Koumoutsakos [12].

2.1.1 Eulerian Simulation

Eulerian fluid simulation is characterized by fixing the simulation elements in space.

In this case, fluid elements may be represented either at the cell centers, or staggered

in centers of cell faces [8] in a volumetric grid. The simulator’s principal job is to solve

the incompressible Navier-Stokes equations, listed in equation (1). These equations

govern how fluid quantities, like velocity or density, change and evolve over time [11],
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and can be derived directly from Newton’s equation of motion [7].

In equation (1), ρ represents the fluid density, ν is the kinematic viscosity and

f is the external force, such as gravity. By setting the viscosity to zero, the fluid is

considered inviscid; this is usually the case when dealing with smoke or water, and

simplifies the solution somewhat. The second equation (2) is called the incompress-

ibility constraint, and specifies that the fluid mass should be conserved throughout

the domain of simulation.

A numerical solver for the Navier-Stokes equations makes the velocity field of the

fluid incompressible, i.e., enforces the incompressibility constraint, by solving for a

scalar pressure field, and then subtracting the gradient of pressure, as in equation

(3):

un+1 = un −4t
1

ρ
5 p, (3)

where ui represents the flow field at time step i and p is a scalar pressure field.

Equation (3) has the form of a scalar Poisson equation; the discretized equations

form a sparse linear system which is then typically solved via an efficient and stable

iterative method. For a full explanation on these subjects the interested reader can

refer to the book by Bridson [7].

Early work in fluid simulation by Foster and Metaxas is characterized by small

grids in 2D and 3D [19, 20]. Foster and Metaxas’ seminal publications were the first

in the field of computer graphics to describe solutions to the incompressible Navier-

Stokes equations with a specific focus on rendering and animation; they also required

strict conditions on the size of the simulation time-step to ensure stability. The

first work to achieve unconditionally stable Eulerian simulation was that of Stam; he

coined his method semi-Lagrangian advection [61]. Stam’s work forms an important

basis for future fluid simulation in computer graphics. Instead of advecting at a cell
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forward in time, which could cause excess velocity to be created due to numerical

errors, then leading to instability, Stam used ideas from the Lagrangian viewpoint.

By treating fluid at a cell center as the end result of a particle’s motion, he steps

backward in time to the particle’s origin and advects that velocity to the new cell

center; this avoids generating excess velocity.

Subsequent work by Fedkiw et al. introduced the notion of vorticity confinement

to counter numerical diffusion [17]. The curl, 5× u, of a vector field u, where 5 is

the del operator, is a vector operator that described the rotation of the vector field.

The curl of a velocity field is called the vorticity, ω; in fluids, this represents the

small scale structure, where we can metaphorically think of each piece of vorticity as

a paddle wheel, spinning the flow in a certain direction. Vorticity confinement works

by finding areas where these paddle wheels are damped out, and adding back the

vorticity.

Numerical diffusion can also be very problematic in liquid simulation. In this

case, diffusion causes the simulation to gradually lose volume over time; the fluid can

appear to “leak” out. The particle level set method, first introduced by Foster et

al. [18,24], provides counter-measures against this leaking, by tracking the surface of

the fluid using particles, tying them to the interface between fluid and air, and then

extracting an isosurface, to form the full 3D surface mesh.

Nguyen et al. describe a physically based simulation of a premixed oxidized

flame [41], modeling the reaction front of a blue flame using the particle level set

technique. This reaction front is the interface between two fluids, with different prop-

erties; conserving mass across the flame front, as fuel ignites, and turns to hot gaseous

products, provides realistic premixed flame behaviour.
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Figure 3: A point vortex vector field in 2D, a simple vortical structure.

2.1.2 Vortex Simulation

Lagrangian approaches are characterized by simulation elements moving through the

domain; there are several ways to model fluids from this perspective. Smoothed

Particle Hydrodynamics (commonly referred to as SPH) solves the Navier-Stokes

equations by interpolating values in space, given a smoothing kernel [6, 31, 34]. For

our work, we do not use this approach, but instead consider the spinning vortical flow

of turbulent fluid motion.

Vortices occur in nature and are familiar to most people; you see them by watching

tornadoes on the news, water flow down a sink, or milk in coffee. Smoke rings are

a common self-propagating vortical structure, and a familiar pattern with characters

fond of smoking pipes. Some simple vortical structures are shown in figures 3 and

4. By taking the curl of the Navier-Stokes equations, we can formulate the vorticity

transport equation:

∂ω

∂t
+ (u · 5)ω = (5u) · ω + v52 ω +

1

ρ
5×f (4)

These equations are the foundation of vortex methods [12]. We can solve these equa-

tions to determine the velocity of the flow field, and how vorticity of the system
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(a) A line vortex (b) A ring vortex

Figure 4: Other simple vortical structures. Images © Michael Gourlay. Used with
permission.

changes with the flow field.

The left hand side of the equation represents the advection in a Eulerian descrip-

tion. The first term on the right hand side is the vorticity stretching term; this term

describes how vortices not only affect each others positions, but also affect the spin

of neighbouring elements. Often, this is implemented as allowing the vorticity field

to spin the nearby vortex particles along with the fluid flow. The second term is

a diffusion term due to viscosity. The last term is an external force’s effect on the

vorticity field.

In our work, vorticity is represented as a point, around which there is a spin,

though it can also be a line or other higher dimensional shape, such as a sheet.

Computing a velocity field from these equations, and advecting these particles though

the simulation domain, produces characteristic rolling and billowing smoke motion.

If instead of using particles, we chose to solve these equations on a grid, it would

involve solving a vector-valued Poisson problem [52].

The velocity for a single vortex particle is given by the Biot-Savart law:
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uv(x) =
1

4π

N∑
i=1

(x− xi)× ω
(x− xi)3

(5)

where x is the position in space and xi is the position of vortex i, and ω is the vorticity

vector of the vortex. The formula is said to have infinite support, that is, it is non-

zero, extending to infinity; it also has a singularity at x = xi. Various methods exist

to mollify this kernel, that is, to remove the singularity, and additionally to limit

to the support to a compact region. Examples of this mollification, and examples

of finite support kernels, can be found in the literature [3, 42, 52]. Although most

implementations choose to use finite support kernels for performance, Speck [60]

proposes a very fast and accurate method of multipole expansion to compute velocity

for infinite support kernels, where groups of distant vortices are treated as a single

vortex, when computing velocity at a point.

Vortex simulation uses primitives that spin the fluid elements, where all elements

together produce a characteristic rolling turbulent fluid flow [12]. Vortex particles

are the simplest such primitive, and are often used for gaseous fluid media such as

smoke [21]. It is also possible to use vortex particles to treat the viscous diffusion

term, and handle boundary conditions, such as flow near solid walls [54]. Handling

no-slip and no-through boundary conditions, as in Park et al. [42], produces an effect

known as vortex shedding, where new vortices form a turbulent wake behind a solid

object. Selle et al. [52] also demonstrate that vortex particles can be added to a

Eulerian fluid simulation to counter the effects of numerical diffusion. Combining

vortex particles with a low resolution simulation [79] adds turbulence to a Eulerian

simulation. Similarly, Pfaff et al. [44] use a novel type of anisotropic turbulence

particle to add high-frequency detail to a coarse fluid simulation. The two-scale

method of Pfaff et al. produces attractive results at near-interactive rates, by avoiding

precise numerical solutions required by detailed fluid solvers in favour of this new class
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of particle. Yoon et al. [79] propose using a precomputation step that computes an

artificial boundary layer, where high Reynolds stress can lead to the formation of

vortices; this is then used to model how vortices are formed near object boundaries,

in order to add detailed turbulence to a static scene.

The point vortex is only one way of representing vortical structure. Gates proposes

a line vortex primitive [22]. Angelidis et al. propose methods for using a series of

connected line segments [2] to form vortex filaments, and subsequently a Fourier

series, to represent a continuous curve [3]. Because vortex filaments can represent

higher-order structure, they can allow for a more detailed simulation phenomena,

using fewer primitives. This comes at the cost of more complex implementation of

the simulation. For instance, since vortex filaments can stretch over time, Angelidis

et al. limit the radius of a filament, preventing excessive stretching and shearing.

Improving on this, Weimann et al. propose a method to dynamically reconnect vortex

filaments throughout the course of the simulation; allowing more natural turbulent

motion [74]. Recent work by Pfaff et al. introduces the idea of a vortex sheet [45];

by solving the vortex sheet equations coupled with a traditional Eulerian solver, they

simulate sharp interfaces between fluid and air.

2.1.3 Eulerian vs. Lagrangian Approaches

There are distinct tradeoffs when working in either the Eulerian or Lagrangian frame.

Eulerian approaches traditionally require solving the pressure equation; this has the

advantage of always generating a flow field that conserves mass, regardless of the ini-

tial state. This can mean arbitrary force fields and velocity affectors are smoothed out

during this pressure solve, allowing for a great deal of flexibility; the control frame-

work may superimpose any set of flow fields, for example, some with high divergence,

and the pressure projection step will shape the combined flow to a divergent-free

velocity field. However, Lagrangian frames have advantages of their own. First, the
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pressure solve can potentially be a very expensive operation when dealing with large

grids, because this involves solving a large linear system; Lagrangian approaches do

not have this expensive step. Often we solve the linear system via an iterative method,

which may require dozens of iterations to converge. Parallelizing this step is essential

and requires some expertise and technical knowledge. Second, when dealing with La-

grangian particles, the domain of computation becomes implicitly adaptive; we only

do computation in the regions where there are more particles, and we can increase

detail in these areas by using more particles.

2.2 Fluid Control

2.2.1 Introduction

Without an effective method to manipulate a simulation, an animator is left at the

mercy of a myriad of physical parameters and forces. Control is an extremely impor-

tant aspect of animation; effect production often calls for a certain shape or shaped

fluid motion [70, 75]. In general, any good control scheme must be expressive, in-

tuitive, robust, and computationally efficient. Fluid control is a frequently studied

area of research, and many different approaches and methods have been explored

since fluid simulation has become more popular, as reported in the survey paper by

Limtrakul et al. [35].

Using broad strokes, one class of control algorithm uses primitives, such as points,

lines or curves, to generate velocity, or force fields, which influence and direct the

fluid flow. An example is found in early work by Gates [22], where he combines flow

fields from several divergence-free primitives. Line vortices, sources, sinks, and spline

curves, each manipulate the fluid flow. Source and sink primitives attract or repel

the flow. Vortex line primitives give a spin around an axis. Uniform primitives act
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as wind fields, and divergence free directional flow primitives act as a guide along a

spline curve through space. Since individually each of these primitives are divergence

free, the principal of superposition dictates that when they are combined they form

a mass-conserving flow field.

In early work by Foster and Metaxas [20], they modify the pressure equation

directly. For instance, by modifying the pressure of a fluid grid cell based on its

location relative to a central axis, they give the effect of a splashing, outwards driven

water fountain. They also propose further tunable parameters such as physically

based surface tension control, and show how to simulate interactions with moving

boundaries. One criticism is that parameter control, such as pressure and surface

tension, affect the simulation in a somewhat indirect manner; the artist or animator

may not know exactly the kind of result he would get from changing the pressure

equations directly, and would prefer a more direct approach.

2.2.2 Target Control

Instead of influencing the motion of the fluid with directed primitives, specifying a

direct target for the fluid can provide a more high-level instrument of control. A

target can take several forms, such as a density field, a set of particles representing a

density function, or a mesh. The simulation then attempts to guide the fluid towards

this target. In some cases, the target shape moves as the simulation takes place, such

as a walking person or galloping horse; each position of the target shape at a certain

time we call a keyframe.

Keyframe control of smoke simulations

The seminal publication, “Keyframe control of smoke animation”, by Treuille et al.

[69], and later improved by McNamara et al. by using the adjoint method [38] uses

artist supplied keyframes of a target density function to directly specify the fluid
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destination. Using general nonlinear optimization, they find the optimal amount of

wind and vortex forces that will move the source fluid density to the target, while

simultaneously minimizing the amount of total control needed. Although they do

obtain good results, they must find the derivatives of every control parameter with

respect to every simulation element. Thus, their simulation times are extremely long.

Additionally they report their method as highly unstable in certain situations. The

adjoint method improves on the simulation time greatly, by instead solving the dual

of the problem. Although this is several orders of magnitude faster, this method

traverses the entire solution space forwards and in reverse, from the last state to the

first, and must store every state along this path, causing huge memory requirements.

Target driven smoke animation

In the work by Fattal and Lischinski [16] and Shi and Yu [56,57], the control framework

is also given as a series of density keyframes, usually representing an object; this could

be a shape such as a galloping horse, or sailing ship. Fattal and Lischinski add two

terms to the simulation; a driving force, F, shown in in equation (6), and a gathering

term, G, shown in in equation (8). The driving force drives the smoke towards the

target, along the gradient of the target density. The gathering term adjusts the source

density of the smoke cloud, ρ, to match that of the density of the target, ρ∗.

∂u

∂t
= νfF(ρ, ρ∗) (6)

F(ρ, ρ∗) = ρ̃
5ρ̃∗
ρ̃∗

(7)

∂ρ

∂t
= νgG(ρ, ρ∗) (8)
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G(ρ, ρ∗) = 5 · [ρρ̃∗5 (ρ− ρ∗)] (9)

In this case, ρ̃ represents a smoothed density field ρ, and νf and νg are scalar

strength parameters. Fattal and Lischinsky’s control framework is very efficient,

adding very little overhead to the simulation time. Since the driving force is based

on the target gradient, however, the density functions ρ∗ and ρ̃∗ must be non-uniform

throughout the domain of computation; otherwise, the gradient would be zero in some

regions, which would case the resulting force field to be zero in these areas. This could

stop smoke outside the target shape from moving towards the target. In some cases,

this restriction might require large smoothing kernels. Additionally once the smoke

reaches the target, it stops moving, and loses the characteristic rolling turbulent fluid

motion.

Controllable smoke animation with guiding objects

Instead of considering a target density field directly, Shi and Yu [56, 57], instead

convert the density field to a level set, and apply control to match the source boundary

to the target boundary. Using the variational shape interpolation proposed by Turk

and O’Brian [71], they generate a morph sequence of guide shapes from the initial

smoke density level set, to the target density level set. Using these guide shapes,

they generate velocity constraints to force the smoke to these intermediate targets.

Since they only apply velocity constraints along the boundary, their method allows

smoke to roll and flow naturally, even after reaching the target. Example velocity

constraints are illustrated in Figure 5. To enforce these constraints, they propose a

novel partly compressible fluid solver, which is reported to be quite efficient and gives

results similar to a standard incompressible solver.

They also propose applying a similar method to free surface liquids [57]. Since
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Figure 5: The velocity constraints applied by Shi and Yu [57] to match the smoke
density to the target. In (a) and (b), the smoke density is entirely outside the
target. In (c) and (d), it partially overlaps. In (e), the smoke is entirely con-
tained, and in (f), it encloses the target. Image © ACM, used with permission.
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liquids such as water are dense enough to be much more strongly affected by gravity

than smoke, when animated, they usually are influenced by this external gravitational

force; this produces the characteristic incompressible flowing liquid behaviour we

expect. Thus, Shi and Yu propose an alternative to gravity, that considers the skeleton

of the target mesh to be the area the fluid “falls towards”; using a potential field

similar to a work by Hong [25], this field acts as a sort of gravity, and pulls the liquid

towards the skeleton of the shape.

Prior to their work with guide shapes, Shi and Yu [58] propose using a series of

forces to steer fluid to match a target density. In their system, short range forces

match the density gradient with the target density gradient, while long range forces

generate a coarse attraction, using electric fields. Their early work also allows the

smoke to continue to move naturally after convergence, along the direction perpen-

dicular to the target gradient.

Controlling fluid animation with geometric potential

Instead of using a level set or density field, Hong [25] uses a target control given

from a potential field. This potential field, generated during preprocessing, is given

for each keyframe, and can be created automatically, or augmented via user input.

This method is very efficient, and provides a very little computational overhead.

However, choice of the potential field determines the quality of the result. Without

user interaction, their method misses thin features. Additionally, if the target changes

shape often, the need to recompute the potential field each time step could cause the

performance of the algorithm to suffer.

2.2.3 Particle Control

Particles are a popular method of achieving volumetric effects, and can store arbitrary

properties, such as color, size, or other attributes. They can be a flexible way for an



21

animator to apply varying types of control through a volume; certain regions may be

filled with a particle with one type of properties, and another with a set of particles

with a different set of properties. This is also be applied directly to fluid simulation,

and provides very effective and efficient control.

Directable photorealistic liquids

Rasmussen et al., [48] propose a framework where the artist is given the ability to

place control particles, governing the velocity, level set (where liquid is injected or

erased), and divergence of the simulation. Additionally these particles can be erasers

or emitters that add or remove liquid. Individual particles are given weights, and a

spatial kernel over which they apply their effects. Further augmenting the control

scheme, constraints can either be “soft” control, where control values are blended

with current values of the simulation, or “hard” control, where the animator can

force the simulation to take a fixed value. These soft and hard controls can influence

velocity and other fluid parameters. They often use very fine-grained control, with

many thousands of control particles, all tuned by the animator to achieve a specific

effect (see Figure 6). Their control framework is scalable; they report their method

as being several orders of magnitude faster than the method of McNamara et al. [38].

However, the control scheme requires the animator to be proficient in manipulating

large clouds of particles. It also does not provide a large scale control abstraction

such as a target destination.

Detail-preserving fluid control

Unlike Rasmussen et al. who provide many classes of artist control, Thurey et al. [68]

propose a simple control framework with a single class of control particle. Thurey

et al.’s framework is designed for particle fluids; in their case they use the Lattice

Boltzmann method [62]. Alternately, we may use a single class of control particle
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Figure 6: The particle control method of Rasmussen et al. [48]. White particles
apply hard velocity control, green soft velocity, and blue are CSG liquid erasers.

Figure 7: The fluid control framework of Thurey et al. [68]. Their system uses a
single class of control particle, which apply attraction and velocity forces. Image
© Elsevier, reprinted with permission.
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control, using SPH for fluid effects [64]. The control particles of Thurey et al. act as

both locally based magnets, that attract nearby fluid particles, and wind forces, that

transport fluid particles along the moving path of the control particle.

In a separate computational step, Thurey et al. isolate turbulent detail by using

a low pass filter, and apply the control velocity only to the low frequency flow. See

Figure 7 for a depiction of their control system. Turbulent flow is then added back,

preserving detail. By capturing the output of a standard forwards fluid simulation,

then they cleverly use this as a control flow, and make fluid flow up to the form of

a target shape. One potential issue with their method is that fluid particles must be

within the control radius of the target particles, or they are not affected.

Particle control can be shaped based on a correspondence between source and

target particles [67]. In this case, the motion of the particles, which may not even be

that of a fluid, is driven towards a target density much as in the target based control

methods. This is a distinct difference from the method of Thurey et al. and leads to

a more abstracted control system.

2.2.4 Precomputation

An entirely different approach to fluid control is to run a standard fluid simulation

off-line, to produce a database of results. These results are then used to generate

an on-line controlled simulation. For example, in the work of Mihalef et al. [39],

they focus their scope on the animation of breaking waves, using an artist controlled

framework, with a database back end. By generating a library of 2D slices of breaking

waves, they then select a series of these slices and then composite them, forming a

3D animation adequately resembling the initial wave shape.
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Figure 8: Control framework for path-based control in Kim et al. [32]. Image
© authors, used with permission.

2.2.5 Path Control

Spline curves can also serve as a high-level control primitive. Artists can use splines

to control the flow of fluid along the path defined by a spline, instead of towards a

target shape. Splines have the distinct advantage of dictating how fluid moves while

it is in transit; in contrast, target control specifies the end condition rather than

the intermediate steps. Gates proposes a spline primitive, consisting of a series of

directional flow primitives, to generate a divergence free velocity field [22]. Kim et

al. [32] augmented the path control spline by other fluid techniques: namely vortex

particles, curling Rankine vortices, and additionally the ability to handle path self-

intersections. Their control framework is illustrated in Figure 8. Their control system

is computationally efficient, adding little overhead, and is able to handle complex

paths, with attractive results.

Angelidis et al., in their work on vortex filaments, propose a controlled method of

adjusting the properties of a vortex ring, to guide the motion of the filaments along a

curve [3]. In general, path control is a useful control abstraction; although it does not
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guarantee the fluid will arrive at a particular point, it provides a means of guiding

how the fluid travels.

2.3 Rendering

Fluid rendering is a complementary problem to fluid simulation; statistics on fluid

density or velocity are meaningless to an film audience until they are expressed in a

visual representation. Additionally, fluids with different physical properties require

specialized methods for visualization. For free surface fluids, we generally first convert

the volume representation to a mesh, then render the mesh in a traditional manner.

Smoke is called a participating media; small particles scatter, absorb, or even emit

light. Similar to simulation, Lagrangian smoke rendering uses a particle based rep-

resentation, and Eulerian approaches use fixed spatial structures, such as grids or

octrees.

2.3.1 Rendering Liquids

Although we do not deal with free-surface liquids, we will discuss rendering applica-

tions, as they are an important topic in fluid simulation. In this case, the fluid is

usually converted to an implicit function, using particle potential, or the free surface

level set. An isosurface extraction algorithm then converts this field to a triangle

mesh. Once converted to a mesh, a ray tracer, or forward rasterization pipeline,

converts this to a two-dimensional image suitable for displaying on a screen.

Marching Cubes [37] is the canonical isosurface extraction algorithm. This method

first labels each voxel with an index, based on the value of the isosurface function at

the voxel corners; a zero bit indicates a corner is below this reference value, and a one

means is is equal to or above. The index fetches a row in a look up table, giving a

list of the triangles to be emitted at that voxel; these faces are then stitched together
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Figure 9: A few of the cases in the Marching Cubes look up table. The algorithm
quickly queries the look up table to determine which triangles to emit. Image
from Wikimedia Commons.

to reduce the number of elements. Figure 9 illustrates a few of the entries in the

Marching Cubes look-up table. Importantly, some of the cases in this table will be

symmetric; thus it is ambiguous which set of triangles to emit. Modern alternatives

to Marching Cubes, such as Marching Tetrahedra [13], dual methods such as Dual

Contouring [29], and other meshing techniques [76] do not have this degeneracy.

2.3.2 Rendering Smoke

Meshing methods do not work for rendering smoke, since it is a participating media;

light beams interact with the smoke particles, giving a translucent, cloudy appear-

ance. General techniques for smoke rendering are categorized as volume rendering,

and this is a large and complex subject, so we will only cover a few relevant tech-

niques. Interested readers can refer to the comprehensive resource, Physically Based

Rendering, by Pharr and Humphreys [47].
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Lagrangian Point Rendering

In our work, we deal with the Lagrangian frame, so we are interested in a Lagrangian

point rendering method. We will briefly discuss some various approaches to rendering

point clouds; our chosen algorithm is somewhat novel, and we describe it in Chapter

5. The ideal rendering method is efficient, both in computational time and memory,

temporally coherent, provides high quality renders, and preferably will work well on

graphics hardware.

When we represent smoke as a point cloud, we commonly use a three step process

for rendering; a first pass computes the opacity of a particle, a second sorts the

particles relative to the camera, and a final pass composites the particles to an image

via a blending equation. The simple alpha blend equation, or over operator, is:

Co = Caαa + Cbαb(1− αa). Here Co is the output color value, Ca is the point color,

Cb the current frame buffer color and αc is the alpha value, or transparency, of color

c.

Because the alpha blend equation requires a spatial sort of the particle data,

new techniques for order-independent shading promise to increase performance, by

obviating the need for a full sort. A new family of GPU point rendering methods use

a structure called the A-buffer [78], or accumulation buffer. These methods render

the scene twice, first storing each rendered fragment to a per-pixel linked list in GPU

memory, and then, in a second pass, sorting the fragments before compositing them to

the screen using standard alpha-blending equation. Alternately, Salvi et al. propose

that the fragments be converted to an adaptive transmittance function [49], to speed

up the second pass. This technique is similar to a deep shadow map [36]. A-buffer

methods provides order-independent processing of individual points, avoiding a sort of

all particle in host memory, and also provide fully pixel-perfect results for primitives

that overlap, or intersect each other.
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Figure 10: An illustration of the steps in volume ray casting. (1) Ray Casting (2)
Sampling (3) Shading (4) Compositing. Image from Wikimedia commons.

Eulerian Voxel Rendering

When we represent our smoke state by a voxel grid, octree, or other fixed spatial

structure, there are a number of rendering techniques available. In some cases, even

when representing smoke as particles, we evaluate a potential field, to simplify the

rendering step. Ray marching, or volume ray casting, shoots a ray, originating from

the camera, through the scene; this ray is sampled in intervals, the samples are

shaded, and then composited in with a blending equation. This process is illustrated

in Figure 10. Sharshach proposed a method to efficient cast rays through volumes on

the GPU [51]. Ikits et al. describe a related method, where they divide the volume

into view-aligned slices, and then composite the slices, in reverse order from the

camera [27]. Monette proposes using an adaptive structure, the density octree [40],

to improve the performance of ray marching by grouping uniform regions of density

in large cells. In general, for best results, Eulerian methods must have sufficient grid

resolution in the areas of high-frequency data.
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2.4 Signed Distance Fields

When dealing with closed shapes, such as triangular meshes, we often need a way to

efficiently find the distance to the surface, from a point in space. Similarly, we might

wish to find the closest point on the surface, to a point in space. The signed distance

field is a data structure that compactly encodes the closest point information, as a

scalar field, indicating the distance to the nearest point on the surface. The ‘sign’

of the distance value indicates if a point is inside or outside the shape; being inside

the shape means the point is enclosed by the triangle faces with all of the normals

pointing outwards. A positive sign indicates the point is inside the shape, and outside

of the shape, the sign of the distance is negative (or vice-versa). Figure 11 illustrates

a simple signed distance field. The gradient of the signed distance field gives an

approximate direction to the closest point on the surface. It is often very convenient

to store the signed distance information in a uniform grid. In this case, we can easily

interpolate distance values anywhere in the grid using bilinear or, in 3D, trilinear

interpolation, with an O(1) computation cost. For better results, we can even use a

higher-order interpolation technique, such as cubic interpolation.

Signed distance fields are an extremely useful tool in computer graphics, and in

simulation. For our purposes, whenever we deal with a shape boundary, we prefer to

always work with a signed distance field, instead of a triangular mesh, since it is so

much more efficient to query. Although we do not implement boundary conditions in

our simulation, they are very helpful when querying if a point is inside or outside of

a mesh; this is a common task in a particle system’s collision detection component.

Additionally, although we do not implement a GPU implementation of our simulation,

signed distance fields are a data structure that is much more GPU-friendly than a

structure such as a KD-tree, due to the similarity to a traditional texture. Thus they

are a good option no matter the architecture in question.



30

Figure 11: A simple signed distance field generated from a circle. Red values
indicate a negative sign (inside the shape) and blue values indicate a positive
sign (outside the shape).

Signed Distance Fields of Triangular Meshes

Computing the signed distance field of a triangular mesh is a frequently studied

problem, and there are many available algorithms [4, 5, 10, 28]. Recent algorithms

exploit GPU parallelism to generate SDFs extremely quickly, using consumer graphics

hardware [59, 63]. Computing a SDF from a mesh starts by initializing a region of

distances, or thin shell, near the boundary; a second pass propagates this information

throughout the volume, using a distance transform. For a more complete review of

signed distance fields and their applications, see the summary by Jones et al. [28].

One simple way of finding correct unsigned distances near the boundary of a

triangle mesh, is to first compute a bounding box around each mesh triangle face,

and then compute distances to every nearby grid cell. This is optimized with oriented

bounding boxes, and specialized efficient distance calculations, as proposed by Erleben

and Dohlmann [15]. The angle-weighted pseudonormal, proposed by Brentzen and

Aans [4], provides an extremely elegant method to compute the sign of an unsigned
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distance, when dealing with triangular meshes. At each vertex, the pseudonormal

is the weighted sum of the normals of the incident faces, each face weighted by the

individual corner angle. To compute the sign of the distance, they find an interpolated

pseudonormal using linear interpolation, at the closest point to the voxel, and test

its orientation against the distance vector with the dot product.

Distance Transform

Once we have our narrow band of correct distance values, we propagate distance

values to the rest of the field, using a distance transform (DT). There are many

varieties of DT; we can classify them according to how they compute distance values.

Chamfer DTs compute new distances of a voxel from the distances of its neighbors

by adding values from a distance template [1]. Vector DTs, where each processed

voxel stores a vector to its nearest surface point and the vector at an unprocessed

voxel is computed from the vectors at its neighbors by means of a vector template,

tend to have increased accuracy [50]. Eikonal solvers estimate a voxel’s distance from

that of its neighbours by a first or second order estimator [81]. By classifying DTs

according how they traverse through the volume, we see two categories. Sweeping

schemes propagate distance information from one corner, to another, in row-by-row

or column-by-column order, using several passes [65]. Wavefront schemes, such as the

Fast Marching Method, propagate distances outward from the surface [53].

Vector DTs perform the best in terms of accuracy, according to Jones et al. [28]. In

general sweeping schemes are simpler to implement than wavefront schemes, although

they may require several passes for improving accuracy. We opt to use a simple

sweeping scheme, which is extremely fast, more accurate close to the mesh, and less

accurate farther away. We describe our implementation in Section 3.3.2.
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2.5 Summary

We have briefly covered the topics of fluid simulation, including the Eulerian and

Lagrangian perspectives, and mentioned some of the key prior work in the area of

fluid control. Our work is a method of particle-based target control, using Lagrangian

vortex particles; a method that has not been addressed exactly in any previous work,

although it shares many similarities with other methods of target and particle control.

We mentioned that we use a Lagrangian point rendering algorithm for our results, and

we discussed a few related smoke rendering algorithms. Finally we discussed applica-

tions of signed distance fields, a useful data structure when dealing with boundaries.

The next section will introduce the key control algorithms, related to particle control

and target control, that we use in our framework.



Chapter 3

Particle Shape Matching

3.1 Overview

The basic components of our system are twofold; we have a base bulk flow that

moves the smoke particles towards the target, and a detailed turbulent flow, giving

a fluid motion. The bulk flow, which we describe in this chapter, provides a coarse

motion driving the smoke towards the position of the target shape, as placed by

the animator. This provides our basic control velocity. The detail flow, which we

describe in Chapter 4, adds a high-frequency layer of turbulent motion. This gives

the smoke the appearance of being a fluid. The combined result of both flow fields

added together gives a controllable, directed, and turbulent smoke cloud.

Smoke is a complex phenomena involving the movement of tiny particles through

air; although gases such as air are more compressible than liquids such as water, in

graphics, we simulate them as incompressible fluids. Additionally, though pressure

forces cause gases to expand, in our work we do not explicitly simulate pressure forces,

instead we choose to use the equations of vortex flow. Smoke rendering is also an

important part of realistic smoke animation; tiny smoke particles scatter light as the

light rays travel through smoke volume. We discuss the details of our fluid simulation

using vortex particles in Chapter 4, and the smoke rendering in Section 5.1.4.

33
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We are primarily interested in the effect of incompressible smoke simulation, with

a degree of viscosity added for artist effect. We also are interested in a highly tur-

bulent smoke simulation, as compared to previous methods which use very slowly

moving smoke, such as from the butt of a cigarette. In contrast the turbulent energy

of our simulations is much stronger. The fluid equations of the vortex particle method

are quite capable of simulating inviscid and viscid smoke, with varying degrees of high

and low energy; the numerical basis for our fluid simulation is the same as previous

methods. However, we use a marker particle redistribution scheme, which we discuss

in Section 4.7, instead of explicit boundary conditions, to constrain our smoke to

the target shape; higher energy smoke obscures the effect of this non-physical redis-

tribution, thus we generally show results with more turbulent energy than previous

methods.

3.2 Bulk Flow

In this chapter we describe how our base flow system moves the fluid to the target.

Since high frequency details would be lost in the turbulence, we only care about the

large scale flow behaviour. Our basic approach consists of the following steps: first,

we sample a target shape, generating a set of target particles. Then, we place the

same number of control particles inside the smoke cloud. A correspondence between

the target and control particles provides the basis for an attraction force, which then

steers the control particle velocity. We then interpolate this control velocity into a

bulk flow field; this bulk flow field is then added together with the detailed turbulent

flow described in Chapter 4. We then use the combined velocity field to advect the

fluid marker particles and advance the simulation.

The following sections describe the control particle initialization, target particle



35

generation, the attraction force, how we optimize this attraction, velocity interpola-

tion, and also how we deal with the target particles when the meshes move, animate

or deform.

3.3 Target Particles

3.3.1 Control Particles

The first step in our algorithm is to generate a set of control particles, inside the

smoke cloud. The control particles provide the driving velocity that moves the marker

particles towards the target shape. We apply an attraction force, described in Section

3.4.1, to these particles; this is integrated over time to give a velocity for each control

particle. From the velocities, we generate a velocity field, and then use this field to

move the smoke marker particles towards the target. Note that the control particles

do not move with the velocity field, but with their individually integrated velocities.

Our first step, then, is to determine how to place our control particles. We wish

to place them evenly over the area where there are marker particles, since we wish

to move these marker particles towards the target. Thus, we compute a field, which

we call marker particle density field, representing the distribution of the M marker

particles over space. Here, we use the word density to represent the amount of

marker particle energy at a point in space. By using a separable tent blur with kernel

radius rm, we can compute this field very efficiently. If this is the first frame of our

simulation, and we have no control particles, we initialize an empty control density

field, PC ; otherwise, we evaluate the control density similarly to the marker particle

density, with radius rc. Good values of rm and rc are typically quite small, and though

they depend on the size of the simulation, the values of rm or rc might be as small

as 5% of the width of the bounding box of the particles. This way the density fields
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(a) Point evaluation (b) After blur pass in x (c) After blur pass in y

(d) Density intensity. Higher values correspond to red, and low to white.

Figure 12: A separable tent blur in two dimensions, distributing particle density
over space. Note that the total density remains the same at every step of the
evaluation.

cover the domain, without being excessively blurred from using a large radius. Figure

12 shows a simple example of a separable tent blur in two dimensions.

Next, we sample the space of the marker particles uniformly, placing a control

particle where the ratio of control density to marker density is below a given threshold.

This number can vary quite a bit; if you prefer a dense packing, use a large ratio, or a

small one for only allowing a few. Then, if we have placed a new particle, we update

the density field, and repeat this process Cinit times. This dart throwing approach

places control particles where control particle density is low, eventually saturating

the cloud over several frames of animation. We will have N control particles, where

N �M .

3.3.2 Particle Initialization

The next step is to generate target particles inside the target shape. Since we will be

repeatedly testing if a point in space is inside or outside the mesh, we first convert

the target shape to a signed distance field representation, using an approach detailed
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in Section 2.4, described by Swoboda [65]. We find an axis-aligned bounding box

around mesh faces, and using the optimized triangle-point distance test, described by

Erleben and Dohlmann [15], we find exact signed distances within a narrow band near

the mesh. Then, using a fast and simple sweeping technique, we propagate signed

distance values through the field using the expression

di+1(x) =


di(x) if |di(x)| < |di(xprev) + c|

di(xprev) + c otherwise

. (10)

In equation (10), di(x) is the distance value at cell x after i iterations of the

sweeping algorithm, c is the uniform (axis aligned) cell width, and xprev is the last

cell visited along the sweep. Note, this method is not perfectly accurate, and accuracy

decreases as the distance increases from the initial narrow band. For our purposes,

we only care about precise results close to the mesh, so this is entirely acceptable. We

perform sweeps along the positive and negative directions of the x, y, and in 3D, z

axes, and do not perform multiple passes, since we have found one pass gives sufficient

accuracy.

Once we compute this SDF, we use it to generate N target particles, the same

number as control particles. Stratified sampling of a grid, aligned with the SDF,

gives a particle at every cell center, for every cell center inside the boundary. We use

equations (11) and (12) to produce an approximate sampling of a mesh T; a second

pass adds or deletes random particles, until we have the exact required sample size of

N points. If we have an undersampling, and need to generate more points to produce

exactly N samples, we use uniform random sampling; we generate points randomly

in a box around the mesh, and reject points that are outside. In the equation

GridSize(T) = [Volume(T)− A ∗ SurfaceSize(T)]1/d, (11)
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(a) The sampling grid (b) Stratified sampling (c) After point removal

Figure 13: Exact stratified sampling of a simple circle target shape, producing N
points.

where

SurfaceSize(T) = Dmin ∗Radius(T) ∗ SurfaceArea(T), (12)

Radius(M) is approximated by Volume(BoundingBox(M))1/d. In all cases

d is the dimension; in 2D Volume is the interior area, and SurfaceArea is the

boundary size. A here is an estimated over- or under-sampling parameter, close to

1, and Dmin is a parameter that specifies the minimum sampling distance to the

boundary. In our tests this equation provides a count of samples reasonably close to

N , in 2D and 3D, for a variety of input meshes. Figure 13 illustrates an example

of our sampling method for a simple test case. We have found for small scenes,

we can effectively initialize the control particles once, when the marker particles are

emitted. For more complex scenes, we might adopt other strategies, such as adding or

deleting control particles, or redistributing them if they stray too far from the region

of interest.

Alternately, instead of creating target particles from meshes, we could extend our

system to use a custom cloud of target particles, provided by an artist or animator.

Technically this would necessitate a few changes in our procedures; it would require
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generating the signed distance field from the density field of these particles, for use

in the attraction force calculation. The other main change would be either requiring

a method to generate an exact number of control particles, as target particles, or a

change in our method that would allow us to handle a differing count of control and

target particles. The advantages of this approach would be to allow target shapes

that are represented purely by particles, which may be convenient for animators who

have existing tools specifically optimized for particle clouds, or who prefer to use this

method of control.

Now that we have described how we generate the control and target particles, we

will describe how these particles move when the target shape is also moving, undergo-

ing skeletal deformation, or other types of transformation without large deformations.

3.3.3 Moving Target Meshes

In many instances, the artist, for a particular effect, will want to move or animate

the control mesh during the course of the simulation. For instance, a person made of

smoke may jump out of view, or pirouette and vanish. In our framework, this means

that our target particles, sampled from a triangular mesh, must move as the mesh

changes position, orientation, or undergoes other transformations.

To move the points with the changing mesh, we use linear interpolation, over the

Delaunay triangulation, or tetrahedralization in 3D (which we will, for simplicity,

refer to as a triangulation). The triangulation is computed once, when the mesh

is initialized. After the target particles are initially sampled, we consider the mesh

element that contains each target particle, in the mesh’s rest configuration. Note that

a mesh element is a triangle in 2D, and tetrahedron in 3D. So, we store, for every

target particle, the corresponding coordinate for this point inside this element, which

is its barycentric coordinate, and the element’s identifier. For efficiency, we accelerate

this spatial lookup of mesh elements using a uniform grid data structure; when we



40

(a) Rest particle configuration and inter-
polation mesh

(b) Interpolated positions of the target
particles

Figure 14: A simple scene showing the interpolation of the Delaunay mesh for
moving the target particles as the target mesh transforms.

have a mesh element e, we restrict our region of interest to this element’s axis-aligned

bounding box, and end up only searching a local region of space.

The barycentric coordinate of a point p is a vector of scalar weights (3 elements in

2D, and 4 is 3D), where each weight corresponds to a vertex of the mesh element con-

taining p. The weighted linear combination of the element’s vertices, at the mesh rest

position, will equal exactly p. Then, when the vertices of the mesh change position,

the linear combination of the new vertex positions, with the old barycentric weights,

will produce a new interpolated position of p. This method has the advantages of

being efficient, and simple to implement. The formula for computing the barycentric

coordinate of a 3D point p in mesh element e is shown in equations (13) and (14),

and the reverse in (15).

If our point is p = (x, y, z), our mesh element, a tetrahedron in 3D, is e =

(A,B,C,D) and our barycentric coordinate is b = (b1, b2, b3, b4),

b′ =


A−D

B −D

C −D



−1

(p−D), (13)
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b = (b′1, b
′
2, b
′
3, 1− b′1 − b′2 − b′3), (14)

p = (b1 ∗ A, b2 ∗B, b3 ∗ C, b4 ∗D). (15)

In some cases simple linear interpolation may not be general enough; for instance,

non-uniform scaling, causing some triangles to become very thin, while others large,

will skew the distribution of target points so that some regions have smaller concentra-

tions of target particles. Dramatic deformations may cause the Delaunay triangula-

tion to interpolate points to positions outside the target shape. Other, more accurate,

interpolation algorithms, such as mean value coordinates [30], a global method where

every mesh point influences every interpolated point, produce reasonable interpola-

tion even when the mesh deforms, or changes shape dramatically. For our purposes,

we assume the mesh only undergoes small local deformations as it is animated, and

we choose the good performance of linear interpolation. An example result from our

interpolation method is shown in Figure 14.

The uniform grid data structure, also called a spatial hashtable, is a uniformly

divided grid of cells embedded in a 3D (or 2D) box, each cell in this grid being

bucket that contains a linked list. The box containing the grid, in our case, is the

axis-aligned bounding box of the cloud of target particles. To find the points at a

region of space, we simply enumerate the points in the enclosed cells, and test them

against the boundaries of this region. The nice property of a uniform grid is a O(1)

access time for each particular cell, and, if we sort the points, the particles will be

arranged linearly in memory, which allows very simple traversal. The lack of any

random memory accesses in this format is a very good thing for speed.
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3.4 Bulk Flow Field

Now that we have our two clouds of N particles, the control cloud and the target

cloud, we want to derive a flow field that drives the smoke towards its targets. We

want to design a flow field such that the motion is broad and uniform, so later we

can add turbulent detail; we also wish to generate this field from a correspondence

between source and target particles. We choose to implement this field by using a

per-particle attraction force to drive the control particles towards their targets, and

then interpolating the velocities of the control particles through the region of the

marker particles. We next discuss the attraction force, followed by a discussion of

velocity interpolation and extrapolation.

3.4.1 Attraction Force

To drive this flow field, we exert an attraction force Fa, on the control particles,

directed towards the target particles. We do this by matching each control particle

uniquely with a target particle, such that a energy function expressed by this config-

uration of sources and targets is globally minimal. Our energy metric must be based

on distance between particles; however, note that, although we prefer short paths,

since that will mean a faster simulation, we also prefer paths of uniform length. Dis-

tant particles should arrive at the target at the same time, or around the same time

as nearby particles. Thus, we choose our energy metric to be squared Euclidean dis-

tance, instead of distance. This will prefer short paths, but will also prefer somewhat

uniform path lengths; longer paths are penalized significantly more than shorter ones.

Having N target and control particles, we initially assign each control particle to

a unique random target. Then, at every time step, we perform a fixed number of

optimization steps, Copt. The optimization algorithm algorithm is shown in listing 1.

This procedure is to randomly test two control particles a and b, to see if exchanging
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their targets produces an improvement in global energy. If so, we exchange their

targets, and then continue to the next trial. Since we perform a fixed number of steps

per frame, the solution improves gradually, keeping coherence, and allowing us to

provide a fixed run-time budget for the algorithm. We have found this method gives

good results, although it is not guaranteed to ever converge to the optimal solution.

Examples of an initial and optimal configuration are shown in Figure 15. The solution

converged to the optimal configuration after several thousand iterations.

Figure 16 shows a sample of our the performance of our algorithm in a simple 2D

scene with 10,000 particles. In this scene, a 5x5 box is filled with flow particles, and

encloses a 2x2 target box. After 80,000 iterations, the algorithm is still incrementally

improving the solution; however the rate of improvement has slowed down quite a

bit since the first 10-20 thousand iterations. Since in most of our results we use only

a few thousand control particles, we arrive at a near-optimal solution quite quickly

with fewer iterations than in this example.

Algorithm 1 Incremental target optimization

for 1 to Copt do
i← Random(1, N)
j ← Random(1, N)
a← Position(i)
b← Position(j)
ta ← TargetPosition(i)
tb ← TargetPosition(j)
dold ← |a− ta|2 + |b− tb|2
dnew ← |a− tb|2 + |b− ta|2
if dnew < dold then

Swap(Position(i),Position(j))
Swap(TargetPosition(i),TargetPosition(j))

end if
end for

Our matching optimization can be framed as an instance of the assignment prob-

lem, a special case of the transportation problem. Here, the task is finding a maximum
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(a) Initial random matching (b) Optimal energy configuration after
several iterations

Figure 15: Effects of the optimization on a distribution of control and target parti-
cles. Figure (b) shows the optimal solution after several thousand iterations.

weight matching in a weighted bipartite graph. A set of nodes V represents the con-

trol and target points, and a set of edges E connect each control point to every target

point. In total this graph will have 2N nodes and N2 edges. The Hungarian algo-

rithm solves this problem exactly, with a time complexity that varies depending on

the implementation; however the simplest implementation has a runtime of O(N4)

which would lead to one trillion iterations to find the solution of a problem with 1000

control points. Other less trivial algorithms have runtime complexity of O(N3), how-

ever this is still prohibitively expensive; moreover, since we do not need an optimal

solution, these exact algorithms are not as useful for our approach.

Our point matching problem can also be framed as a general instance of the trans-

portation problem, a special case of linear programming. In this problem statement,

we have a set of nodes which provide supply, called ‘sources’, and nodes which con-

sume the supply, called ‘sinks’. The sources provide supply over edges, each with a

cost, and satisfy the required demand of the sinks. In our case, the problem is very

simplified; we have exactly N sources and sinks, each with supply and demand 1, we

permit exactly one edge used at every node, and our fully connected graph has edges

with cost equal to the squared Euclidean distance. An exact, optimal solution to
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Figure 16: Example convergence of the optimization algorithm with 10,000 particles

this problem can be very expensive to compute, hence we prefer our stochastic min-

imization algorithm. Interested readers can refer to the paper by Zhang et al. [80],

where they treat a similar problem, and frame their solution as an instance of the

transportation problem, although differently from our problem. In our method, we

match target particles one-to-one with control particles, while in their method, they

group particles in clusters, which have different weight. They also allow for different

numbers of source and destination clusters.

Now that we have established a reasonable correspondence between our sets of

particle, we use this to compute an attraction weight wa. This attraction weight

describes how much a particle wants to move to its target; we then use this weight to

compute attraction force, which affects the particle velocity. Our attraction weight is

wa = ( |x−xt|
E(xt)

−Aφ)Aρ. In this equation, x is the position of the control particle, xt is the

position of the target particle for this control particle, E(xt) is the feature size of the

mesh at xt, which we describe below, andAφ andAρ are scaling parameters. The force,

Fa, is computed as Fa = x−xt
|x−xt| ∗ Saturate(wa) ∗ Sa where Sa is a global attraction
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strength parameter, and Saturate clamps wa to [0, 1]. This linear function gives

an increasing weight with distance, allowing the attraction force to gradually ramp

down as particles approach their targets.

Feature size of a mesh is a method of measuring mesh size; it is defined as the

distance from a point inside the mesh, to the medial axis, as explained by Persson [43].

The medial axis visually resembles the skeleton of the mesh; it is a tree of line segments

running through the center of the mesh. We estimate feature size by marching a ray

along the reverse gradient of the signed distance field, until we reach a point where

the direction of the gradient is reversed; this will occur on the other side of the medial

axis. Using feature size conveniently gives us the ability to scale the attraction force

according to the size of the mesh, which usually indicates the size of the scene itself.

We apply a simple damping step after we have integrated the attraction force over

time to compute a new velocity. If the velocity of the particle is vf after integrating the

attraction force, the damped velocity is vd = vf − vf ∗ d, where d is a scalar damping

strength parameter, usually quite close to zero. This damping effect is crucial as it

stops velocity from accumulating frame to frame and allows the points to settle slowly

when we stop the attraction force. We solve for the new control particle velocity via

Euler integration, and advect control particles using a second-order Euler integration.

3.4.2 Velocity Interpolation and Extrapolation

Given our cloud of moving control points, each with a unique velocity, we want to

use these sparsely distributed velocities to transport a cloud of marker particles rep-

resenting our smoke volume. In a sense, we must take as input this sparse velocity

set, and transform it to a vector field that covers the domain of the smoke. This

process is called interpolation, for determining velocities between velocity samples,

and extrapolation, for determining velocities outside the region of the samples. This

interpolated and extrapolated velocity then governs the flow of the smoke marker
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(a) Control particle velocities (b) Interpolated velocity field

Figure 17: Velocities from the control particles are interpolated over an axis-aligned
grid to form a velocity field, that we then use to advect the marker particles
during the particle update.

particles. There is a large repertoire of techniques for interpolating and extrapolat-

ing sparse data, each with various properties; for example, linear interpolation over

a Delaunay mesh gives exact first-order accuracy (the meaning of exact explained

below). The higher-order natural neighbour technique gives second order accuracy,

by computing an informative Voronoi tessellation, and using this to find a weighted

average of nearby points. For a comparison of several methods, with advantages and

disadvantages, see the study by Yang et al. [77].

We use a variant of Shepard’s Method, or inverse distance weighting [55], to
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interpolate velocity between control points, and extrapolate it over the nearby area.

In the original Shepard’s method, when we have a collection of N samples ui, each

interpolated control velocity uc(x) at a point x is expressed as:

uc(x) =
N∑
i=1

wi(x)ui∑N
j=1wj(x)

, (16)

where

wi(x) =
1

d(x,xi)p
. (17)

Here d is a distance metric, such as Euclidean distance, and p is a positive real

number. We use a slightly different distance weighting

wi(x) =


(r2v − d(x,xi)

2)3 if d(x,xi) < rv

0 otherwise

(18)

which has a clamped radius rv. This distance weighting, conveniently, is not just

defined between velocity samples, but over the entire radius rv. That is, it does not

just interpolate the velocity samples, but extrapolates velocity outside the convex

hull of the data points, out to a distance of rv. In practice this function gives good

results, and is very simple to implement. In our tests this produces similar results

to inverse distance weighting, where the influence of a point decreases with distance.

An example of our interpolation is illustrated in Figure 17. We use a temporary

grid to accelerate the bulk flow field sampling step: we compute the interpolated and

extrapolated velocities at the cell centers of this temporary grid. Later, during the

particle update step, we sample velocities from the grid to advect the smoke particles

with the bulk flow velocity. This temporary grid provides a great speed improvement

at a small cost in accuracy; since we are mostly interested in low-frequency effects,



49

the trade-off is acceptable.

Other more sophisticated choices for interpolating velocity from sparse data in-

clude methods which are inherently divergence-free, a very attractive property for

fluid simulation. Hong and Yoon describe a divergence-free method of interpolat-

ing velocity that gives fluid-like results without using the Navier-Stokes equations at

all [26], using moving least squares. By using diffusive derivatives and moving diver-

gence constraints, they achieve fluid-like interpolation, solving a moving least squares

problem at every grid cell. The drawback, however, is they report their method as

extremely computationally expensive. Vennell and Beatson propose using divergence-

free radial basis functions to interpolate sparse velocity information [72], while being

both accurate and implicitly divergence-free, for ocean flow data sets. A radial basis

function, or RBF, is a real-valued function whose value depends only on the distance

from the origin, or some other point, called a center. Linear combinations of RBFs

are used to approximate other, more complex functions.

We chose our method of distance weighting for speed, simplicity, and ease of

extrapolation; however, more complex approaches may by necessary for other appli-

cations. Note, as in evident in Figure 17, the interpolation is not exact. That is, the

interpolated velocity at control particle position p does not equal the original control

velocity. In effect, we have a smoothed velocity field, averaged over nearby particles;

this produces coarse, and smooth overall motion. Since we are creating a bulk flow

velocity, this is adequate; however, some applications may require an exact method.

3.5 Summary

We have presented here an overview of our method of generating control and target

particles, and how these control particles are moved through the domain. The control

particles are moved towards their targets with an attraction force, generated from the
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correspondence with target particles, and then the resulting velocity is distributed

over space to transport the smoke marker particles. This is the process by which

we compute our bulk flow field, and in the next section, we will describe how we

implement our turbulent flow field.



Chapter 4

Turbulent Vortex Flow

In the previous chapter, we described how we generate the base flow field that drives

the smoke towards the target shape. This bulk flow efficiently matches the source

density to the target density; however, on its own, it does not have any turbulent

motion, and does not appear fluid-like. That is, it lacks fluid behaviour, and moves

directly towards the target, in a somewhat inert and uninteresting manner. To add

the missing characteristic rolling, turbulent fluid motion, we generate a turbulent

flow field, using the vortex particle method. We then combine the base flow field

with the turbulent flow field, to get a final combined result. This base and detail

approach will drive the smoke towards the target shape, while simultaneously having

the fluid-like rolling motion characteristic of a smoke cloud. Since the turbulent flow

field does not dissipate immediately, the smoke will not come to a complete stop

after reaching the target; it continues to move on its own until the user stops the

vortex simulation, through an artist-controlled dissipation effect. This prevents the

simulation from coming to a full stop too quickly after reaching the target, which

could have an unnatural, static appearance.

51
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4.1 Vortex Flow

As we mentioned in Chapter 2, vortices often occur in nature. We see them in

tornadoes, when water empties down the drain of a sink, or in smoke rings. From a

mathematical perspective, the equations for vortex flow are derived directly from the

Navier-Stokes equations. The curl of a vector field V is defined as 5×V , where 5 is

the del operator, a vector operator which in 2D is
(
∂
∂x
, ∂
∂y

)
and in 3D is

(
∂
∂x
, ∂
∂y
, ∂
∂z

)
.

The curl of a vector field can be thought of as a way of representing the flow of the

field, where at each point in the vector field, there is a little spinning paddle wheel,

which is the curl at that point. By taking the curl of the Navier Stokes equations, we

obtain equation (19):

∂ω

∂t
+ (u · 5)ω = (5u) · ω + v52 ω +

1

ρ
5×f . (19)

The left hand side of this equation describes the velocity given by the vorticity of

the system. In this section we describe how to determine the flow field from a single

vortex, which we represent as a vortex particle; this is the same thing as solving the

left-hand side. The right hand side of the equation contains three terms, and all of

these terms describe how the vorticity of the system changes over time. The first

term, which we describe in Section 4.4, describes how the spin of individual vortices

is itself rotated, stretched and sheared by other vortices. The second term, which we

will describe in Section 4.3, is the diffusion term, which gradually reduces the energy

in the system. The last term described the effect of external forces on the system.

This, however, we do not treat specially; vortex particles can move according to any

flow field, or any external force. Applying external forces to the vortex particles

directly is sufficient to handle the action of the external force term.

These equations can be solved on a grid; however, instead of solving a scalar Pois-

son equation for pressure, as with a traditional Eulerian fluid solver, we end up with a
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vector-valued Poisson equation. Solving a vector Poisson equation can be a complex

task, and is easily side-stepped by using the Lagrangian vortex particle method. Par-

ticle based methods also have a important secondary advantage of avoiding grid based

numerical dissipation, a common drawback of Eulerian techniques, which we mention

briefly in Section 2.1.1. Although there are methods, such as vorticity confinement,

to combat numerical dissipation, purely Langragian vortex methods have precisely

zero dissipation, and do not require a precise linear solver to reduce error. For the

full derivation of the solution to computing the velocity from the vorticity, refer to

the textbook by Cottet and Koumoutsakos [12]. We are most interested in the result

that the velocity contribution, v(x) of a vortex particle at a point x, is described by

the Biot-Savart kernel, which is listed in equation (20):

uv(x) =
1

4π

Nv∑
i=1

(x− xi)× ω
|x− xi|3

. (20)

Here Nv is the number of vortex particles. This kernel gives the exact analytic solution

to computing velocity from vorticity, which is exactly what we want. However, it has

two serious problems we must solve. First, the magnitude of uv(x) approaches infinity

as x approaches xi, and it has a singularity at x = xi. This will produce large velocities

at some central points. Second, it has infinite support; that is, the magnitude of the

kernel is greater than zero at every point in space. This means computing the velocity

for a large cloud of vortices is quite expensive, as we need to visit every point in space

for each vortex.

One technique for solving the issue of the singularity is to mollify the Biot-Savart

kernel; ‘Mollification’ refers to using a smooth function to approximate a non-smooth

one. In our case, the Biot-Savart kernel is not smooth when the point in space x we

are computing velocity at is equal to the position of the vortex xi; at this point there

is a singularity. By using a linear law inside a certain fixed radius, σ, we can solve
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Figure 18: Mollified Biot-Savart energy kernel of a vortex with radius R = 1.

this issue, where

uv(x) =
1

4π

Nv∑
i=1

(x− xi)× ω
max(|x− xi|3, σ3)

. (21)

Thus, if |x − xi| < σ, the magnitude of the kernel approaches zero, as x approaches

xi [23]. We depict the energy of this kernel in Figure 18. Additionally we may choose

other kernels to replace the Biot-Savart kernel, that do not have a singularity. The

second issue, the infinite radius, is a performance problem, and various approaches

exist. Usually they involve a small degree of approximation. For instance, we may

use a cut-off value; if the magnitude of the velocity beyond this radius is below a

specified minimum, we clamp this magnitude to zero [46]. This means we do not

have to visit every point in space for every vortex. For our work, we use the method

of Angelidis et al. [52], where instead of using the “ground-truth” Biot-Savart kernel,

we express the velocity-from-vorticity equation as

uv(x) =
Nv∑
i=1

[(x− xi)× ω] ξ(|x− xi|2). (22)
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Figure 19: Compact energy kernel of a vortex.

Here, ξ defines the strength of a vortex, given a squared distance to a point in space.

We define the compact energy kernel ξ of a vortex, as in Angelidis et al. [52], and

shown in Figure 19, as

ξ(x2) =


(
4− 20

x2+4

)2
if x2 < 1,

0 otherwise.

(23)

This expression requires no square root computation, which is is good for performance.

Additionally, it is smooth throughout the domain, and is zero everywhere where x2 ≥

1. Using this kernel as a function for vortex strength, we also store a vortex radius,

σ. This radius determines the spatial range of the vortex, and the vorticity value,

ω determines both the direction and magnitude of rotation. Thus the expression

for vortex vorticity in our simulation is ξ(x2)σ. The task then becomes, given these

expressions, how to compute the accumulated velocity at every point in our domain

of interest, for every active vortex particle.
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4.2 Velocity from Vorticity

In Section 4.1 we described how we compute the velocity from a single vortex, using

equations (22) and (23). The vortex simulation engine’s job is to use these equations

to produce a velocity field that the smoke particles travel along. This vortex particle

method will produce natural, turbulent fluid motion. So, for every point in space

where there is smoke, we must compute the net vortex velocity at this point, given a

collection of vortex particles, each with a radius and vorticity vector. Although there

are many different methods to computing velocity from vorticity, they generally can

be divided in two groups: exact methods and approximate methods.

Exact methods require that, for every smoke particle, we compute the precise

vortex velocity at this point; then the smoke moves with that correct velocity. The

simplest method, brute force, belongs to this category of approaches. We compute

the total velocity contribution of every vortex particle, at every smoke particle’s po-

sition, using the equations above, and use this velocity to advect the smoke particles.

Intuition may suggest that this technique may be very slow, and this is correct; this

algorithm quickly becomes infeasible with thousands of vortices, and hundreds of

thousands, or millions, of smoke particles. A more efficient alternative is take advan-

tage of the fact that all of our vortices have a finite radius. Because they have zero

influence beyond their area of effect, a spatial search of nearby vortices can reduce

the computational cost significantly; we can ignore all vortices whose area of influ-

ence does not reach the point at which we are computing velocity. To implement

this, we might use a data structure such as the uniform grid described in Section

3.3.3, or a binary tree structure, such as a KD-tree [73]. Note, however, although this

will greatly improve runtimes from brute force, each vortex may affect thousands of

smoke particles. Furthermore, it does not reduce the worst case computation time.

For example, in the degenerate instance where all points and vortices all have the
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same position, spatial acceleration fares no better than brute-force. Thus we might

look for a faster alternative to spatial search.

A good alternative to exact methods is to sacrifice a bit of precision, for a hopefully

large gain in performance. The family of algorithms known as multipole methods [60],

offer large gains in speed for relatively small losses in accuracy. Furthermore, they

do not require that the vortex kernel is finite; they prefer vortices to have infinite

support. To understand how multipole methods work, consider a smoke particle, far

away from a cluster of distant vortices. The effect of each vortex on this point is very

small, and in fact all these vortices have very similar velocity contribution, because

the displacement vector from each vortex to this point will be very similar. The key

idea in the multipole method is to treat distant groups of vortices as a single vortex;

hence we only compute velocity with nearby vortices exactly, while distant vortices are

summed to average vortices, and then the single average vortex contributes velocity

to the distant smoke particle. These velocities are stored in a tree data structure,

which has fast lookup for these average vortices. This approach offers compelling

advantages in terms of accuracy and performance; however, since we are interested

in maximizing performance, and the multipole method, by nature, is specialized for

vortices with infinite support, we still might find a method that is even faster.

Although we are using Lagrangian vortex particles, with a point-based approach,

we can still integrate some elements of the Eulerian frame, to make our velocity

computation much faster. By placing a bounding box around the dynamic region of

our simulation, we can subdivide that region into a grid of cells, or a uniform grid.

Then, we can compute the exact vortex velocity at every cell center, directly. Given

this uniform grid, computing an approximate vortex velocity anywhere in the domain

is simply a matter of linear interpolation from the nearest cells. Note, we must make

sure to use a grid size small enough that the features of the vortices are preserved.

We are not attempting to have perfect physical accuracy, however, if the grid size is
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too small the structure of the vortices will be lost due to aliasing.

We do this direct velocity from vorticity computation using a scanline “rasteri-

zation” approach, inspired by pixel shaders. For every vortex, we find a bounding

box of grid cells from its area of influence, given by its radius and magnitude; then

we traverse each cell in order, adding the new vortex velocity to each cell center we

traverse. We use SIMD vector instructions for this computation, which gives the

key performance advantage of this method. These instructions peform four velocity

computations in a single instruction, and are optimized for speed. Although we use

linear interpolation for points in between grid cells, and this introduces a source of

error, we are interested in interactive simulation rates, and the general appearance

of a fluid rather than strict physical accuracy. For our method, the performance ad-

vantages are compelling. We now have our velocity field; however, the other terms

in equation (19), which describe how the vorticity of the particles change over time,

require separate solutions.

4.3 Particle Strength Exchange

The second term of the right hand side of equation (19) is v52ω, which is a diffusion

term that describes how the spinning vorticity slows down over time. Since the vortex

particle method has no viscous forces at all, it is useful to add in a controlled amount

of viscosity for artistic choice. In our Lagrangian vortex particle framework, we

implement this diffusion effect using a technique known as particle strength exchange

[12,42], or PSE. Each vortex gradually gives a a little bit of its own vorticity value to

nearby vortex particles, and in turn takes a little bit of the vorticity of its neighbours.

Over time, vortices with opposite spin will exchange their vorticity, bringing the net

result closer to zero. This will slow down the rate of spinning, and simulate the

process of diffusion.
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We implement PSE using a uniform grid data structure. We arrange the vortex

particles into this spatial grid table, using the same method as we describe in Section

3.3.3. Then, finding neighbouring pairs of vortices is simply a query into this uniform

grid of indexed vortices. If we have a pair of vortices with vorticity vectors ωi and

ωj, and kernel radii σi and σj, we then compute the new vorticity value for vortex i,

ω′i, as

ω′i = ωi + υ ∗ dij ∗ (σ3
jωj − σ3

i ωi), (24)

where

dij = Saturate
(
1− |pi − pj|

dmax

)
. (25)

The equations for ω′j are similar. Here, Saturate is a function which clamps the

input value to [0, 1], and dmax is a parameter which governs the maximum distance

at which vortex particle can affect another. The parameter υ is a global diffusion

strength, governing how much diffusion is present in our simulation. Note that in

equation (24), the difference in total energy between the two vortices determines how

much energy is transferred from one to the other. The strength of the exchange

decreases linearly with the distance between the particles; nearby particles exchange

much more energy than distant ones. The next section will describe the other change

in vorticity during the course of the simulation; it describes how the direction of

rotation of the vortex particles is affected by the system.

4.4 Vortex Spinning

The first term on the right side of equation (19), (5u) · ω, is called the stress term.

It describes the stretching and tilting of vortices, due to the velocity field. This term
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only applies in 3D, and in our system, we implement it by changing the orientation

of a vortex particle’s vorticity vector at every timestep. By expanding this term in

three dimensions, where the 3D velocity vector u = (u, v, w)), we get

ωx
∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
=



∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z




ωx

ωy

ωz


= J(u)ω. (26)

Note that this involves spatial derivatives, specifically the gradients of velocity. The

gradient of a vector field in 3D is a 3 by 3 matrix, called a Jacobian matrix, which we

annotate in equation (26) as J(u). In our implementation, which is similar to that of

Gourlay [23], we compute the Jacobian of the velocity field, and then compute the new

tilted vorticity vector by multiplying a bilinearly interpolated Jacobian matrix with

the old vorticity vector. We also scale the result of this term by a strength parameter,

Sj, before applying it to the vortex particles. Note that as Gourlay observes, this

implementation of the tilting and stretching term will produce errors in vorticity, as

a result of round-off and truncation due to linear interpolation. These errors can

have the effect of energy being gained or lost from the system, and ultimately cause

instability. We constrain the energy of each vortex by normalizing the new vorticity

vectors, after the application of the stress term. Thus, each vortex will have the same

vorticity magnitude as it did before the tilting term. This normalization has the effect

of only changing the orientation of the vortices, not changing their magnitudes; it will

stop the simulation from becoming visibly unstable from this step.
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4.5 Spawning Vortex Particles

We have described how vortex particles produce velocity, are affected by diffusion via

particle strength exchange, and spin with the flow. In this section, we describe how

and where we spawn vortex particles in the simulation. To place vortices, we use a

simple dart-throwing scheme, similar in nature to how we place control particles, as

described in Section 3.3.1. We initialize a uniform grid, storing the current turbulent

energy of the system, for use in quickly determining how much vorticity is in a par-

ticular region of space. We also store marker particle density in a separate uniform

grid, as we described in Section 3.3.1. We only wish to place turbulence in areas

where there are marker particles, since vortex particles by themselves are invisible.

Thus, after computing the bounding box of the marker particles, and inflating it by a

fixed amount to cover the borders, we randomly throw darts into this volume (or area

in 2D); when the marker particle density is above a given threshold (which prevents

turbulence being created in uninteresting regions), and turbulent energy is below a

certain threshold (preventing regions of excessive turbulence), we place a new vortex

particle at that dart’s position. The particle is given a random vorticity magnitude,

in a random direction sampled from the unit sphere, and a random radius. Radius

and vorticity magnitude both sample from normal distributions. In this manner we

repeatedly spawn vortices, until our domain has a sufficient ambient vortex energy.

One key consideration is that the finite radius particles have sufficient distribution

to cover the entire domain of simulation. Because we do not simulate infinite support,

there will likely be regions of space that are completely unaffected by any vortex

particles. However, our domain of interest is the region of our smoke marker particles.

The randomized rejection approach described above, given enough trials per frame,

is enough to ensure there is a sufficient amount of turbulent energy throughout the

smoke volume.
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4.6 Particle Advection

Now that we have described our methods of vortex creation and simulation, in this

section we describe how we move the control particles, the marker particles, and the

vortex particles themselves with the bulk flow and turbulent flow fields. Since we

intend to simulate hundreds of thousands to millions of marker particles, we wish to

do this with a preference for performance, without sacrificing numerical accuracy. We

first add the interpolated control velocity field, described in Section 3.4.2, with the

turbulent vortex velocity field described in Section 4.2. This single velocity field is

stored in a single uniform grid structure, and can be quickly sampled for an approx-

imation of flow velocity, using bilinear interpolation in 2D, or trilinear interpolation

in 3D. Depending on the choice of parameters, the control flow field and turbulent

flow field may or may not be the same size and grid coarseness; thus, we combine

them into a new grid by sampling velocities from both fields.

We perform particle advection in two steps. In a first pass, we advect the marker

and vortex particles with the combined flow field described above. Since control

particles are affected by attraction force, as we describe in Section 3.4.1, and are the

source for the bulk flow field, we move them separately, in a second pass, according

to integrated velocities from the attraction force. The second pass we describe below

in Section 4.6.2. We also do not always apply vortex motion to the control particles,

instead leaving that as a choice for the animator; advecting the particles with the

vortices causes a slower convergence to the target shape, but also allows for more

fluid motion.
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4.6.1 Marker and Vortex Particles

Given the previously described merged flow field, which combines our individual bulk

and turbulent flow velocity fields, we now wish to advect the marker and vortex par-

ticles. Marker particles and vortex particles move purely according to the combined

flow field. To find the new position of a particle given a velocity, the problem state-

ment takes the form of an ordinary differential equation. However, in our case, we

can make a simplification; because we have a velocity field, we can simply step the

position of the particles through this field, instead of recalculating the entire state

vector at every step. In this simplified case, if the position of a particle i is xi, we

have xn+1 = f(∆t, xn), where f is a function that computes a new position from

the previous position for a given time step value, ∆t. The simplest solution to this

advection problem is the Euler method. If u(x) computes the velocity of the field at

x, the Euler method solution is xn+1 = xn + u(xn)∆t.

Although the Euler method is fast, it is only a first-order method, and thus pro-

duces a great deal of error. This error grows as it accumulates over multiple frames,

and in our simulation, causes the rapidly rotating points near the centers of vortices

to over-shoot their targets, and travel gradually outwards. This leaves ‘holes’ located

in near the center of the vortex particles, where the error is larger. We instead use

a second-order Adams-Bashforth scheme, described by Park and Kim [42], where

xn+1 = xn + ∆t
(
3
2
u(xn)− 1

2
u(xn−1)

)
. This higher-order scheme uses the previous

frame’s velocity to estimate a more accurate particle trajectory. It has the downside

of requiring additional storage, but has the convenient property of only requiring a

single velocity sample per particle, per frame, which makes it nearly as fast as the

Euler method, and significantly faster than methods which require multiple samples

of the simulation. We have found this scheme effectively addresses the problem of

vortex ‘holes’, producing a desirable mix of accuracy and performance.
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4.6.2 Control Particles

Control particles have two main considerations to distinguish them from the marker

and vortex particles. Firstly, they are affected by the attraction force, or other exter-

nal forces, which then are integrated over time to produce a velocity, independently

of the bulk and turbulent velocity fields described in previous sections. Secondly, we

may or may not wish the control particles to move with the turbulent fluid flow field.

Choosing not to move the control particles with the vortices can have the effect of in-

creasing control, or alternately, choosing to move them with the vortices can increase

the appearance of being a flowing fluid. If we decide to leave the control particles

unaffected by the flow field, they retain their trajectories quite easily, and assume the

target shape very quickly. When we move them with the fluid particles, the net effect

produces a simulation with more overall turbulent motion and appearance of a fluid,

but the particles converge more slowly towards the target shape. It is also possible

to blend the velocity of the bulk flow field with a strength parameter between zero

and one to advect them partially with the flow, giving a trade-off between these two

effects.

We integrate the attraction force, and any other acting forces, over time, using

the Euler method described above. This produces a velocity, which we then store

along with each particle. In the case where we choose to move the control particles

with the turbulent flow field, we sample the vortex velocity field at the positions

of the control particles, and add this sampled velocity together with the previously

integrated velocity. We then use the Adams-Bashforth scheme, above, to integrate

velocity over time, finding the new positions for the control particles. In this manner

we strive for good performance and accuracy when advecting the control particles,

while maintaining their trajectories given by the attraction force.
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Figure 20: The result of disabling the marker particle redistribution.

4.7 Marker Particle Redistribution

When we advect the marker particles along with the combined flow field, they often

end up outside the radius of the control particles. This happens because the chaotic

movement from the vortex flow field may often trend away from the region of influence

of the control particles. This has the undesirable effect of leaving marker particles

outside the area of control, and obscuring the shape boundary behind a cloud of

smoke. Because we generate the vorticity from random turbulence vectors, with their

strengths and vorticity vectors sampled from a uniform distribution, the next flow

field will spread the smoke through space. This spreading, a similar effect to diffusion,

produces a cloud of smoke enclosing the object, and the details of the mesh become

less apparent. Figure 20 shows an example of this effect.

Since we are more concerned with producing a pleasing effect than physical ac-

curacy, we have a certain amount of leeway in choosing how to solve this issue. We

use a simple randomized incremental scheme to find marker particles outside of the

control area, and randomly place them using rejection sampling. The algorithm is

listed in listing 2. Note that for sampling control density, we use the control particle

density field described in Section 3.3.1. Note we must ensure that the value for ε is
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small, otherwise the algorithm will not terminate.

Algorithm 2 Incremental randomized marker particle redistribution

ControlRegion← ComputeBoundingBox(ControlPoints)
for 1 to Credist do

i← Random(1,NumMarkerParticles)
p← MarkerParticlePosition(i)
if ControlDensityAt(p) < ε then

repeat
p′ ← RandomPointIn(ControlRegion)

until ControlDensityAt(p′) < ε
MarkerParticlePosition(i)← p′

end if
end for

Although it is not guaranteed to fix every marker particle each frame, the incremental

nature of the algorithm is such that, if Credist is sufficiently large, gradually the

particles move back inside the volume. If the number of redistributed particles is

chosen to be fairly low, compared to the overall number of particles, this effect is not

noticeable, and appears to be smoke gradually dissipating into the atmosphere. It also

has the advantage of being simple to implement, and computationally inexpensive.

This method will prevent a cloud of shapeless marker particles from being left outside

the region of influence of the control points.

4.8 Summary

In this section, we presented our methods for vortex particle creation and simulation,

and particle advection. We describe how we compute the velocity for a single vortex,

and extended this to efficiently computing vortex velocity over the entire domain.

We also discussed how we spawn vortex particles, how we keep the marker particles

within the area of interest, and how we move particles in the simulation along with

the flow fields and forces. In the next chapter we will present some results from
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our simulations, describe the performance of our implementation, and discuss the

advantages of our approach.



Chapter 5

Results and Discussion

Now that we have discussed the details of our method, namely our base flow field and

our turbulent flow field, we will present and discuss some results from our simulations.

We also will first discuss the technical details of our implementation, with particular

attention to how we implement optimizations with parallel programming and render-

ing. We will then compare our results with the results of other implementations of

target-based fluid control, and then continue to discuss some of the advantages and

open issues remaining from our work.

5.1 Implementation

5.1.1 Parallel Implementation

One of the main criteria we selected when designing our proposed solutions is to

prefer methods which are fast, and preferably easily parallelizable, over more accurate,

slower, and complex techniques. By selecting simpler algorithms, for example by

avoiding recursive functions usually involved in spatial structures such as octrees and

KD-trees, and preferring uniform grids and large particle clouds, we often can make

use of the parallel processing ability of modern CPUs, to reduce our computation

68
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time. We also exploit the GPU for rendering. This often leads us to a point where we

run our simulations at interactive rates, even with reasonably detailed and interesting

simulations.

There are three main parallel architectures that we will discuss, each of which has

advantages and disadvantages for implementing parallel algorithms. These methods

are threading, SIMD vector instructions, and GPU programming.

5.1.2 Threading, SIMD and GPU Programming

Multiple hardware threads and cores, available on most, if not all, modern CPUs,

allow simultaneous execution of different code in different mini-programs, or ‘threads’,

while using a shared memory space. This parallel programming architecture is the

most versatile, as all of these threads operate independently, and are capable of

processing different instructions at different times. The main limitation imposed by

this architecture on the algorithm designer is to ensure multiple threads do not write

to the same memory location at the same time. This can cause a conflict known as

a race condition. Using ‘thread local storage’, or TLS, we overcome this limitation.

TLS provides a local data buffer for each thread, which, at the end of the routine,

we combine in a reduction operation to form our final result. For example, when we

compute the velocity grid from a collection of vortices, each thread stores a separate,

identically sized, uniform velocity grid. Each thread individually does not need to

worry about other threads, as they can not possibly conflict during a write. The grids

are then reduced, via summation over all local grids, to form a final superimposed

velocity field.

We also exploit a common feature of modern CPUs called single instruction,

multiple-data, or SIMD, vector instructions. The most ubiquitous set of such instruc-

tions is the Intel SSE instruction set, which is available in several versions, some of

which are almost universally available on modern desktop CPUs. In this architecture,
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we store a packed vector of numbers in memory, most commonly groups of four float-

ing point, or integer, numbers, forming a 128-bit vector data type. The programmer

then instructs the program to execute instructions that perform four computations at

once, on working sets of 128-bit values. For instance, using the SSE ‘ADDPS’ instruc-

tion, we can sum four floating point values in a single instruction. The ‘RSQRTPS’

instruction is a notable special case, as it computes four reciprocal square roots in one

instruction, quite a bit faster than using a standard library computation for square

root. For our threading implementation, we use Intel’s Threading Building Blocks

library, a high-level set of routines that facilitate cross-platform, powerful threading

primitives.

There are two significant limitations imposed by the SIMD architecture on the

algorithm designer. It is more efficient, though not strictly necessary, to load and

store data to and from these 128-bit registers in aligned 128-bit memory accesses.

That is, adding four values randomly scattered through RAM will require the CPU

to load these values single-threaded, and then the programmer to insert them into a

single 128-bit packed vector. Avoiding this gather operation will dramatically improve

performance due to how the CPU stores memory in cache; it is much faster to load

sequential data than randomly accessing it. The second important limitation is that

“single instruction, multiple data”, by definition, means a single instruction has the

same operation on all elements, of the vector. It is impossible to, in a single SSE

instruction, add two of the elements in a vector, while computing the difference of

the other two. This restriction makes implementing divergent code branches much

more difficult than using hardware threads; the designer must visit all paths of the

code, for every thread, unless all or none of the threads will access that branch.

Nevertheless, if these restrictions do not degrade the speed of the implementation too

much, SSE code can provide speed increases ranging from 2x to 20x, depending on

the instructions in question. We discuss more details of our SIMD implementation in
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Section 5.1.3.

A third and final important parallel architecture we will discuss, although one we

do not exploit for our simulation, is the GPU programming architecture. Consumer

GPUs, widely available on desktop computers, offer incredible amounts of raw float-

ing point operations per second. The restrictions of GPU programming are similar

to SIMD; however, GPUs are extremely complicated machines, and are becoming

ever more general purpose with subsequent hardware revisions. They also allow more

flexibility than SIMD design, such as allowing divergent code branches, or random

memory access. However, algorithm performance on GPUs can vary widely between

hardware vendors; sometimes the penalties for using techniques such as branching dif-

fers widely. We did not exploit the potential of using GPUs to compute our simulation

data; however, we implement our rendering algorithm using the GPU, as we describe

in Section 5.1.4. Moreover, since the SIMD architecture is strictly less flexible than

the GPU architecture, our simulation algorithms that use SIMD code are capable of

running on the GPU. We believe exploiting the processing power of consumer GPUs

for our work is a promising direction of research.

5.1.3 Array of Structures vs Structure of Arrays

We must carefully design our algorithms to fit the constraints of each particular paral-

lel programming architecture, though they share some common ground. As previously

mentioned, multi-core and multi-thread implementations rely on data exclusivity, or

the ability to write to memory guaranteed to be exclusively accessed by that thread,

and to not read from memory currently being modified. SIMD instructions require

both aligned and linear memory access for best performance. Furthermore, they en-

force data parallelism, with strict instruction symmetry; a single instruction executes

for all threads. Now, since we require linear, aligned access for our data structure,

when loading 2D or 3D vector data, if we store vectors as component-wise structures,
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(x, y) or (x, y, z) in 3D, we have a few problems. First, our data is not aligned in

3D, we have three components for a four element register, which means we have a

complex task if we want to access aligned memory. We also will often be left with

the task of adding elements horizontally (within the same vector), such as adding

the x and y components of the vector. These problems can quickly complicate the

optimization process.

Instead of storing a single array of packed structures with (x, y, z) data per ele-

ment, called the ‘structure-of-arrays’ layout, we choose the ’array-of-structures’ lay-

out. The array-of-structures layout stores data in a structure of two or three large

linear single-component arrays; it stores two large float arrays for 2D data, and three

large arrays for 3D data. We now perform our mathematical routines on the 2D or 3D

vectors by loading four elements for every vector component, where we have complete

independence between the different x, y and z values. Without the previously alluded

overhead of reorganizing our data in memory to fit SIMD operations, this allows us

very good performance when accessing memory. It also allows a degree of simplicity

when designing our algorithms.

5.1.4 Rendering Implementation

Smoke rendering, as we discuss in Section 2.3.2, is a broad topic, with many algo-

rithms to choose from. Most offer various advantages and disadvantages in terms of

performance, accuracy and ease of implementation. We chose for our animations a

method proposed by Swoboda which he calls “stochastic” shadow mapping [66]. Note

that his method is not the same as “stochastic transparency”, proposed by Enderton

et al. [14]. Swoboda’s method has the main advantages of being relatively cheap to

compute, simplicity of implementation, and attractive results.

Stochastic shadow mapping is based on a similar idea to traditional shadow map-

ping. In traditional shadow mapping, for each light, we first render the scene to a 2D
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buffer called the shadow map; we transform the scene objects into light space, and

store the smallest depth value at each pixel position. Then, in a second pass, in a

fragment shader, we sample the shadow map to determine if the scene is in shadow.

We again transform the position of the object (pixel) in question to light space, and

test this against the shadow map value; if the depth is smaller, it is lit, and if it is

larger, then it is behind a lit surface, and is in shadow.

Stochastic shadow mapping uses a similar basis for its computation. Using a

large shadow map, in our results 4096x4096 pixels, we write the smoke particles as

single points. The x and y coordinates of the point in light space become texture

coordinates into the 2D shadow map, and we store the z depth of the point to the

light. Note that many particles may collide; we will discuss this problem shortly.

Assuming no collisions, we can perform a traditional shadow computation as follows:

in a second pass, for every smoke particle, we compute the light space coordinates

of the particle and and sample the shadow map with a large (say 20x20) kernel. At

each sample, we test the stored particle depth versus the current particle’s depth; the

fraction of particles in front of this particle determines if the particle is in shadow

or not. Instead of looking up a single shadow value at the particle for opacity, the

large kernel averages the many surrounding shadow values to give a smoother, softer

result. The fraction of occluded samples determines the final opacity value for the

particle. In this fashion, particles behind many nearby particles are shadowed, while

particles near the light are visible and rendered at maximum brightness.

As we mentioned, when drawing the smoke particles as points in the shadow map,

there may be collisions. If we only draw certain particles to the map, we will be left

with noisy opacity values. Thus we introduce a stochastic nature to the algorithm,

to ensure full coverage of the smoke particle data set. We insert particles into the

shadow map with a small, random offset. This helps compensate for the fact that

some particles may almost always be occluded by nearby particles and ensures that
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every few frames, each particle will visit the shadow map at least once.

Now we have a different problem: sometimes very rapid changes in how particles

occlude each other can result in flickering, as particles come out in front or behind

other particles. We solve this flickering using the same method as Swoboda; we use

a temporal smoothing step to blend each particle’s final shadow amount value with

that of its shadow value from the previous frame. This blending converges to a stable

solution after a few frames, and because the topology of the cloud does not change

dramatically from frame-to-frame, the approach offers reasonably alias-free renderings

with good temporal coherence.

The stochastic shadow mapping approach is simple to implement, very fast, and

only requires one texture write and k texture lookups per smoke particle, where the to-

tal kernel size is k pixels. It has one disadvantage compared to some other techniques

we discuss in Section 2.3.2; proper rendering requires fully ordered transparency for

the alpha-blend step. This means that unlike the order-independent methods we de-

scribed before, we must sort our particles back-to-front relative to the camera before

rendering. For this we use a threaded sort, implemented using Intel’s TBB library. An

interesting alternative to this CPU sort is a GPU-only incremental even-odd merge

sort [33], which, due to its incremental nature, can be amortized over several frames,

further reducing computation time.

The downside to the stochastic rendering process is a large degree of temporal

aliasing. Additionally, since particle density varies spatially, some areas may be under-

sampled and have a spotty appearance. Previous work in smoke simulation frequently

uses Eulerian simulation, which has a smoother appearance, despite having less detail

in some areas. Using volumetric methods, as we discussed in Section 2.3.2, would

provide a more alias-free shadowing, at a cost of performance. Increasing the particle

count helps the under-sampling issue; additionally using an anisotropic particle kernel
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can provide a smoother appearance, as Angelidis et al. [3] propose in their particle-

based method.

Now that we have discussed some parallel optimizations in our method, and the

implementation of our point renderer, we will present some results from our simulation

framework.

5.2 Results

In general for a good fluid simulation there should be rolling, turbulent motion with a

high degree of detail. In our case we also wish the smoke to take the shape of a target

mesh: a good simulation should make the mesh features visible while still allowing

the smoke to move in a turbulent manner. Although previous methods show gentle

rolling smoke, we believe our method is best suited to more violent turbulence with a

great deal of vortex energy; thus a large degree of turbulent motion is another feature

we are looking for in our simulations.

Figure 21 shows a sequence in which the target mesh takes the form of the Greek

letter psi, then shifts to the to the letter omega, causing the resulting flow to ‘morph’

between the two targets. This experiment is similar to an example of Fattal et al. [16];

we show their results in Figure 22. Our result has the advantage of having continuous

turbulent motion even after the smoke has reached the destination shape. In contrast,

the smoke in Fattal et al. stops exactly upon reaching the target. On the other hand,

their simulation matches the shape border more precisely, and offers somewhat more

detailed turbulent flow. Their detail comes from the expensive pressure solving step,

performed on a large grid; in comparison the simulation and rendering times of our

results are much shorter. For reference, we show a visualization of the paths of the

control points from the morph sequence in Figure 23.
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For the letter morph scene, our simulator takes on average under 500 ms to simu-

late and render the scene per frame. This scene has 2 million marker marker particles,

10,000 control and target points, and roughly 10,000 vortices. Because we use the

GPU for interactive rendering, we render the scene simultaneously as we simulate the

next frame. Furthermore, the total render time is always dominated by the simula-

tion time. We do not report on a split between simulation and rendering times, as

disabling rendering does not reduce the rum time budget for these scenes. Detailed

timing numbers for the letter morph simulation are listed in Table 1. These timings

are generated on a machine with an 4 core 8 thread core i7 Intel processor, with a

nVidia GeForce 570 GTX graphics card. Fattal et al. report their simulation to take

about 10.6 seconds per time step on a Pentium IV, with several time steps per frame,

for a total time of 35 minutes of computation time per second of animation. They

also do not list render times. Although it is very difficult to compare performance

on machines from different generations, the decrease in run time in our simulation is

likely not due to just the difference in computational power.

In Figure 24, we again present a comparative result, to the results of Shi and

Yu [56]. Their results are shown in Figure 25. For this test, we again used 2 million

marker particles, 10,000 control particles, with approximately 10,000 vortices. This

scene, which uses the mesh of a standing horse as a target shape, again shows less

accurate matching of the target shape boundary; however, since they also have interior

motion inside the shape, they show generally less precise boundaries than Fattal et

al.. They also use a different rendering method, which has the appearance of lighter

more transparent smoke. They do not report the profile of the computer they use

for their simulation; however, they report simulation times of 4 hours and 15 minutes

to generate a 1250 frame animation sequence, giving an average simulation time of

12.24 seconds per frame. In contrast, our result takes around 500 milliseconds per

frame. Again they do not report render times, and our result is more than an order
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Figure 21: Morph sequence

of magnitude faster.

We also present the result from matching an animated target mesh in Figure

26. Skeletal animation does not cause our simulation any significant performance

overhead, with this scene taking again between 120-170 ms per frame with 400,000

marker particles, 1000 control points and 10,000 vortices. This character has the

appearance of a ghostly smoke creature; although features are more turbulent than

sharp, the motion of the smoke has an interesting, lively appearance.

5.3 Parameter Choices

Now that we have presented some of our results, we will make a note of a few impor-

tant steps in how we generated them. Specifically, we will address common problems
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Figure 22: Morph sequence of Fattal et al. [16]. Image © ACM, used with permis-
sion.

Figure 23: Morph sequence, control points only

Module Time (ms) Time (%) Parallelism

Evaluate Marker Density 102 21% Multi-thread, SIMD

Evaluate Control Particles 82.6 17% Multi-thread, SIMD

Advect Marker Particles 117 24% Multi-thread, SIMD

Redistribute Marker Particles 36.4 7% Multi-thread

Depth Sort 127 26% Multi-thread

All Other Operations 23 5% Various

Total Time 488 100% N/A

Table 1: Timing results for the letter morph sequence
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Figure 24: A sample animation matching the shape of a horse
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Figure 25: Horse shape matching animation from Shi and Yu [56]. Image © ACM,
used with permission.



81

Figure 26: A smoke creature formed from an animated target mesh
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with several settings of the simulation, and how to tune these parameters appropri-

ately. Although we have many parameters, which we list in Table Table 2, only a few

‘critical’ parameters have a great effect on the simulation. Many could be determined

automatically from the size of the scene, or have little effect on the simulation result

beyond an initial sensible setting.

Some parameters, such as the number of optimization iterations, are relatively

insensitive beyond a certain minimum, many simulation variables must have con-

strained values to achieve a good looking simulation. The simplest such parameter

is the size of the dynamically generated grids: the control velocity grid, the vortex

velocity grid, the combined flow grid, the marker particle potential grid, the control

particle potential grid, the vortex energy grid, and the signed distance field. If there

are too few cells, the resulting information such as the vortex velocity, or the values of

the signed distance field, will not be able to represent thin, high-frequency features.

Figure 27 shows an example of this problem, where, because the signed distance field

has an overly coarse resolution, the thin features of the mesh are lost; the sampling

process does not place target particles in these thin areas, and some parts of the mesh

are under-sampled. As a corollary, there must be a sufficient number of target parti-

cle to resolve all the mesh features; there must be an adequate threshold to allow for

generating sufficient control particles in the source particle cloud. We use a similar

set of parameters as listed in Table 2 for our other scenes; in general we find these

parameters work well for many scenes of the same general size.

Another simple issue is that of excessive control velocity force, where S, the global

attraction strength parameter, is set too high. Excessive force can overpower the

turbulent detail flow; if too high, the points will rush to their targets without any

turbulent motion, because the bulk flow velocity will proportionally be larger than the

turbulent velocity. For instance, in the smoke creature scene, we use an attraction

scaling strength of 30, with a damping constant of 0.3. When the artist adjusts
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parameters to shape the behaviour of a scene, the attraction strength parameters

are very instrumental. Additionally the number of redistributions, Credist, strongly

affects the appearance of the scene.

In addition to control parameters, control particles and marker particles in our

simulation are associated with a radius. This radius must be carefully chosen when

evaluating marker particle potential, which we described in Section 3.3.1, and for the

vortex velocity interpolation, which we described in Section 3.4.2. Setting a very

narrow size for the control potential allows for sharper detail in the shape matching;

this will constrain the particle redistribution as discussed in Section 4.7, and force

the marker particles to an area closer to the mesh. Conversely, setting a larger radius

when evaluating control velocity ensures that the bulk flow is smoother. We use a flow

particle velocity radius of 0.1 in our smoke creature scene, while we use a potential

radius of 0.01; the much smaller potential radius ensures tighter redistribution. Note

also this bulk flow is not divergence-free, which can lead to undesirable visual artifacts,

though this does not occur in practice in our tests. This leads us to our next section,

where we will discuss some of the drawbacks and outstanding problems with our

approach.

5.4 Outstanding Issues and Future Work

Although we do not set as one of our objects a purely physically accurate simulation,

and are not completely restricted by the constraints of physical realism, there are

non-physical aspects to our work that can cause visual artifacts, or noticeable and

undesirable behaviour. For instance, our bulk flow field is not divergence-free; as

we mentioned in Chapter 2, fluids such as water typically do not exhibit divergence.

This can mean that in some simulations, at some times, the divergence in the bulk

flow causes points to spread out then later merge back together, giving an uneven
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Symbol Parameter Value

Critical parameters

M Number of marker points 400000

N Number of control/target points 10000

rm Marker particle radius 0.01

rc Control particle radius 0.01

Sa Global attraction strength 30

d Attraction velocity damping 0.3

Mean vortex radius 0.5

Mean vortex magnitude 4

Credist Marker particle redistribution iterations 400000

Other parameters

Cinit Control particle initialization darts 10000

Minimum number of SDF cells 30000

SDF narrowband width 0.1

Minimum cells in other fields 20000

A Mesh sampling parameter 0.6

Dmin Minimum mesh sampling distance 0.0001

Mesh point location grid cells 13824

Copt Optimization iterations per frame 10000

Aφ Attraction strength offset 0.05

Aρ Attraction strength scaling 0.5

rv Velocity interpolation radius 0.1

Domain bounding box scale 1.2

Vortex radius variance 0.01

Vortex magnitude variance 0.2

Vortex initialization darts per frame 100

Vortex initialization minimum energy 300

Vortex initialization maximum energy 500

Vortex initialization minimum particle density 0.1

υ Vortex viscosity (PSE) 0

Sj Vortex spin strength 0

Render resolution 1200 by 800

Shadow map size 4096

Shadow kernel size 20

Shadow map draw pixel offset 0

Shadowing temporal blend weight 0.8

Particle render size 0.15

Individual particle density 0.1

Table 2: Parameter values for the smoke creature scene
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appearance. Although this effect is undesirable, it is often unnoticeable in our tests;

furthermore, since the movement of the control particles is independent of any other

particle except its target, and they always arrive at the target exactly, ensuring the

target particles are spread out guarantees the net motion of the smoke will be spread

out. Note the uniform sampling and stratified sampling both provide a reasonably

spread out distribution of target particles. Thus, over time, the marker particles will

arrive at a spread out, accurate destination inside the mesh. One possible solution

to the problem of intermediate divergence, is to apply the kind of divergence-free

pressure projection we described in Chapter 2, which we find in a traditional fluid

solver. However, because our simulation discards grids between subsequent frames,

the projected velocity field does not iteratively improve the solution over subsequent

frames, and the velocity field may require many iterations to converge at a divergence-

free solution.

Additionally as we mentioned in Section 5.2, compared to other methods, our sim-

ulations do not match the target boundaries as precisely. Because we do not explicitly

deal with any sort of boundary conditions, the shape edges are often chaotic and tur-

bulent. For future work, we might investigate the advantages of implementing simple

boundary conditions to contain the smoke to the target shape. For instance, using

mirrored vortices, paired with vortices inside the boundary, cancels out ‘through’-

velocity from the vortex flow field [9]. Additionally, panel methods, which involve

placing sources, or vortices, along the boundary, and then solving for how strong

each source or vortex primitive should be to cancel the through-velocity, is a fre-

quently used method [42]. This form of boundary condition solution might allow for

more precise matching of fine features.

Finally, the divide between base flow and turbulent flow sometimes causes an

appearance of smoke motion without large-scale turbulence. The base flow is entirely

turbulence-free, thus when the simulation drives motion more from the base flow than



86

(a) Missing details after SDF sampling (b) Original model with details

Figure 27: Insufficient grid resolution in the signed distance field

the turbulent flow, it does not appear to be fluid-like. It may be interesting in future

work to look in to other directions to approach bulk flow, such as using a hybrid

method, by generating a bulk flow field using a Eulerian approach similar to Fattal

et al. [16], or by replacing the bulk flow with some method of directed flow from a

purely Lagrangian vortex particle frame; that is, to direct vortex particles using a

modified vortex kernel or a carefully placed arrangement of vortices.

Generally our results can be characterized as ghostly and turbulent. Performance-

wise, we simulate and render our results far faster than previous methods, sometimes

bordering on interactivity. In this chapter, we have presented some of our results,

discussed the details of our implementation for parallel code and rendering, and men-

tioned a few limitations we have found in our work. We also discussed ideas for our

future work. In the next chapter we will conclude, as well as elaborating on future

directions for this work.



Chapter 6

Conclusion

Over the course of this discussion, we presented our novel two-layer approach to

shape-targeted fluid control. Fluid control is a difficult, but important problem; fluid

systems by their nature are chaotic and governed by complex equations. Fluid control

means giving artists and animator effective, efficient, and expressive means to direct

a fluid simulation. There are many different options to choose from when designing

a system for fluid control. Many use artist controlled primitives, or clouds of control

particles, or even methods of precomputation, to speed up a controlled solution.

Some, like us, use a target mesh to guide the fluid towards a target density.

In this work, we have presented a style of target control using a Lagrangian

particle-based approach, specifically tailored for smoke simulation; using control and

target particles, and vortex particles for turbulence, we separate flow between a shape

matching bulk flow, and a turbulence layer. The vortex particle method, a method

of Lagrangian fluid simulation which represents turbulent motion as a set of spinning

particles called vortices, represents each fluid particle much like a rotating paddle

wheel. Each vortex particle spins the fluid around a point in space. This is how we

implement our turbulence model; we drive the smoke towards the target mesh using a

set of control particles which steer towards target particles, the former placed inside

87



88

the smoke density, and the latter placed automatically inside the mesh. We com-

pute the bulk flow field from the integrated velocity of a set of control particles; we

drive the acting attraction force on the control particles via a correspondence between

control and target particles. Our contributions are: a system of fluid target control

derived from a separation of bulk flow and detail flow, that accurately matches a tar-

get shape; a novel way of determining a driving force from a correspondence between

source and target particles, which is simple to implement, fast, and accurate; and a

SIMD-optimized extremely efficient implementation of velocity-from-vorticity, which

we described in Section 4.2, for use with compact vortex kernels.

Our efficient, and complete, algorithm for targeted shape matching and fluid con-

trol has very low simulation times compared to previous methods. However, in the

future, we believe exploiting the massive parallelism of consumer GPUs could provide

an interesting future direction of research. This could lead to interactive simulation

times, even for counts of marker particles above one million. Furthermore, although

our particle redistribution technique adequately enforces a rough shape boundary,

experimenting with explicit boundary conditions for our vortex simulation could give

more definition to small mesh features, such as the ridges of eyebrows, other facial

features or smaller details. We would also like to investigate methods of divergence-

free directed flow control, to enforce a divergence-free condition on the bulk flow field;

this would provide for a fix to some artifacts that appear when the target attraction

is strong. Our simple and effective methods of simulating smoke gives us an near-

interactive simulation for smoke shape matching. We have attempted with this work

to give artists and animators a fast control scheme with a high level of abstraction,

when designing visual effects with a fluid simulation system. This is one type of

application of fluid control; ultimately there are many possible such applications and

this work is a small step towards complete artist control over fluid effects and other

natural phenomena.
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