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Figure 1: From curves to artistic tessellations.

Abstract

In this paper we propose to tessellate a region by growing curves.
We use a particle system, which flexibly provides good control over
the final effects by variations of the initial placement, the place-
ment order, curve direction, and curve properties. We also propose
an automatic image-based mosaic method which has good texture
indication, using a smoothed vector field to guide particle move-
ment. The final irregular tessellation simulates stained glass where
the elongated curved tiles suggest the content of highly textured
areas. We give some additional applications, some of which resem-
ble naturally occurring irregular patterns such as cracks and scales.
We also notice that stacking a set of curves in a structured way can
produce the illusion of a 3D shape.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation;

Keywords: Tessellation, particle system, natural patterns, mosaics

1 Introduction

Human are very good at abstracting similar structure from natu-
ral textures such as fish or snake scales, cracks, or bark. This is
because the human brain contains mechanisms that rapidly define
regions having common texture and color [Regan 2000]. We call
these “natural patterns” if they have irregular tessellations but sig-
nificantly similar other structural properties in abstraction.

The existence of irregularities and randomness reminds us of the
beauty of nature. Some artists also like to introduce unorganized
elements into their work. Typical examples can be found in Tiffany
glass or in stained-glass mosaics. Figure 2 (a) shows a Tiffany glass
example that uses irregular tiles to represent objects. The curved
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boundaries are very jagged and rough. The artist Barbara Keith
used a lot of uneven tiles of different shapes to express the hen in
Figure 2 (b). In particular, the elongated tiles show the flow of the
feathers beautifully. However, it is very difficult to automatically
generate a tessellation that not only contains texture indication but
also possesses organized irregularities.

(a) Tiffany glass (b) Stained-glass mosaics

Figure 2: Two typical art work showing the irregular tessellation.
(a) By an anonymous artist from Flickr.com; (b) By Barbara Keith.

There is a very long history of research on creating regular tessel-
lations. The mainstream methods are region-based methods, typi-
cally based on Voronoi diagrams [Okabe et al. 1992]. However, it
is difficult to adapt such methods to represent natural patterns with
elongated, irregular, or curved tiles; control over site placement is
insufficient to create the desired tile shapes. It is common to see
the use of regular tiles (e.g., square or hexagonal), especially in
simulations of traditional mosaics [Hausner 2001; Elber and Wol-
berg 2003; Faustino and de Figueiredo 2005; Smith et al. 2005; Liu
et al. 2007; Liu et al. 2010]. High-frequency textures are not of-
ten retained in earlier results due to tile shape constraints and style
requirements.

In non-photorealistic rendering (NPR), researchers dealt with im-
ages either with region-based methods like mosaics or with stroke-
based methods [Hertzmann 2003] separately. However, they rarely
connect them together. The main contribution of this paper is an
idea to tessellate a region by adding curves, either sequentially or in
parallel, starting from a single point or from a distribution of points.
The key is that, instead of tessellating with individual tiles (or re-
gions), we build the boundary of each tile by the growth of curves.
Our implementation employs a particle system where particle trails
form curves. Control over the variations of the initial placement, the
placement orders, curve directions, and curve properties provides



a lot of possibilities for creation of irregular or curved tiles. An-
other contribution is to propose an automatic mosaic method with
good texture suggestion. The application to an image shows sim-
ilar effects to stained-glass mosaics. We also expand on the basic
idea to present both abstract and natural patterns, introducing two
variations, a splitting technique and a stacking technique. Figure 1
shows four irregular tessellations obtained by our system for differ-
ent artistic styles: an abstract for Tiffany glass, craquelure on an oil
painting, stained-glass mosaics with good texture indication, and an
example of macaroni art.

2 Previous Work

Since Hausner first introduced Centroidal Voronoi Diagrams
(CVDs) to simulate mosaics [Hausner 2001], numerous re-
searchers [Elber and Wolberg 2003; Faustino and de Figueiredo
2005] used similar techniques to pack similar-shape objects to ex-
press image information. They were usually based on different em-
phasized features such as intensities or edges either manually or
with user assistance. Recently, Liu et al. [2010] solved the mo-
saic simulating problem in a global energy optimization framework
with graph cuts. However, usually square or hexagonal tiles are
used in those applications and the goal for optimization based on
shape constraints does not address texture. To introduce tiles of
arbitrary shape into mosaics, some researchers treated the mosaic
problems as a packing problem [Kim and Pellacini 2002] or area-
based CVD [Smith et al. 2005]. However, they used regular or
near-regular tiles (such as polygons). Less regular tileswere created
by allowing tiles to overlap and then cutting the overlap [Di Blasi
and Gallo 2005; Battiato et al. 2006; Orchard and Kaplan 2008];
the use of initially square tiles limited the irregularity. Different
from Voronoi-based methods, Mould [2003], aided by operators
from mathematical morphology, and later Brooks [2006], using a
unique region-merging tool, represented stained glass by different
segmentation shapes. However, they did not attempt to treat highly
textured structure for regions containing, for example, hair or feath-
ers.

Real stained-glass mosaics usually prefer showing the large-scale
flow of the tiles for such textures. Most mosaic-making methods
paid attention to object boundaries, usually aligning with edges,
both in terms of position and orientation. Recently, Kyprianidis and
Kang [2011] simulated similar directional image features very well,
abstracting using directional shock filtering. We want our mosaics
to have similar high quality in texture abstraction but with different
irregular shapes.

Particle systems [Reeves 1983] are widely used in simulating natu-
ral phenomena in graphics. Miyata et al. [Miyata et al. 2001] per-
formed particle simulation with proximity-based forces for square
packing. They presented some organic texture such as reptile skin
and scales. Work close to ours was done by Xie et al. [2010],
who proposed an interactive sketch-based system for oriental brush
strokes on complex shapes. Our curve tracing algorithm is similar
to their work but is automatic.

3 Tessellations by Growing Curves

Instead of thinking of tessellation as packing individual primitives
into a region, we could build a tessellation by filling a region with
curves. The curves themselves are the tile boundaries. We describe
our tessellation as follows.
Process 1. Given a region and a direction field, and also given
a starting point or a starting distribution, a tessellation is formed
by the growth of a set of curves, growing either sequentially or in
parallel. Each curve grows until it stops either by reaching another

curve intersection or the region boundary. If the length of a curve is
too short or the curve passes too close to previous curves, the curve
is removed.

The adjustments for the initial starting assignment, the order of the
growth, the orientation of the growth, and the properties of the
curves (such as curvature, arc length, and thickness) control the
final effects of the partition. We strive to create tessellations that
have good visual quality. Wong et al. [1998] demonstrated that
repetition, balance, and conformance to geometric constraints are
three elements to the perception of order. We take their advice and
we also intend to introduce irregularities and randomness into the
partition to make our simulation appear natural. The following are
some general principles we adopt for our process.

• Curves have similar properties along their length, such as cur-
vature; starting orientations are also similar. Enforcing this
produces similar region shapes, providing a sense of unity.

• We do not allow short curves to be used and we do not allow
the spacing of two curves to be very close.

• We enforce a minimum spacing when we assign starting
points.

• Irregularities are attained by putting some random elements
into the curve properties and the curve starting orientation;
further apparent randomness derives from the uncertainty in
intersection locations.

The curve growing process can be either sequential or parallel. In
the sequential case (S-Method), we process curves one by one: an-
other curve is created when the previous one is completed. In the
parallel case (P-Method), multiple curves are initialized simultane-
ously and then grow incrementally in parallel.

(a) D1 (b) S-Method with D1 (c) P-Method with D1

(d) D2 (e) S-Method with D2 (f) P-Method with D2

Figure 3: Four examples from our basic idea. Left: Two direction
assignments (D1 and D2); middle: the sequential method; right:
the parallel method.

We show examples from both our sequential method and our paral-
lel method in Figure 3. The tiles in those tessellations are not regu-
lar, but curved and elongated. Globally, the tessellations have some
similarities because they are using the same curve generation pro-
cess and the same two direction fields. However, some differences
appear because of the order of operations. The parallel method bet-
ter preserves the large-scale trend from the initial distribution, since
curves are generally shorter and hence do not have time to vary
much from their initial direction. Spatial control is only possible
through the initial distribution. Conversely, the sequential method



has more flexibility of spatial adjustment since logic can be applied
at each individual curve placement, taking into account all previous
curves. Doing this often makes the order of curve placement ap-
parent, which is sometimes undesirable, although for some patterns
such as cracking it is a useful effect.

Figure 4 shows a suggested process for the S-Method. The first
curve begins at a random point and grows in two opposite direc-
tions. Next, we create and maintain a distance map, storing the dis-
tance of all locations to the nearest point either on a curve or on the
region boundary. We next generate a curve beginning at the point of
maximum distance; in this way we avoid the narrow spacing due to
close placement. The process iterates, repeatedly growing the next
curve and updating the distance map, stopping when the maximum
distance value is below a threshold.

Figure 5 then shows an example of the P-Method. This example
begins with a 5× 9 grid of points. Each iteration, the curves are
grown in a fixed time step. The curve will stop its growth when it
meets with other curves or the region boundary. After all curves
stop growing, the process ends.

Figure 4: Progression of S-Method (D2 vector field).

Figure 5: Progression of P-Method (D2 vector field).

In principle, any method for curve generation can work for this
strategy. We propose to use a particle system [Reeves 1983] as our
curve generator in this paper. We use a physical simulation imple-
mented with forward Euler integration. Each time step (∆t = 0.01),
the particle system updates a new position x from previous velocity
v0 and previous position x0 based on the dynamics. The sequence
of positions constructs a curve. The key calculations are as follows:
a = F/m for a force F , v = v0 +a×∆t, x = x0 +v×∆t, and we use
unit mass m = 1. We use different force configurations for differ-
ent purposes. For mosaic styles, we read

−→
F from a vector field; for

other abstracts and natural patterns, we use the Lorentz force, previ-
ously used to generate magnetic curves [Xu and Mould 2009]. The
examples in this section were generated using magnetic curves; de-
tails appear in the following sections. Figure 6 shows another group
of tessellations from the same strategy as Figure 3 but using curve
variations. They all globally maintain the same directional impres-
sions as Figure 3. However, they contain further small-scale details
due to the variations in curve properties.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 6: Curve variations. Top: S-Method ; Bottom: P-Method.

4 Texture Indication for Mosaics

Next, we will use an image to guide our tessellation. Simply using
our existing tessellations from the previous section and assigning
the average color to each tile, we can create interesting abstrac-
tions, shown in Figure 7. Despite using tessellations unrelated to
the image content, the colors give some indication of the original
lotus image, shown in Figure 8.

(a) (b) (c) (d)

Figure 7: Abstraction from Figure 3. (a) S-Method with D1; (b)
P-Method with D1; (c) S-Method with D2; (d) P-Method with D2.

Figure 8: A lotus and its vector field.

These abstract images contain some visual interest. Nonetheless,
we are more interested in presenting representational mosaics, and
especially in using flow to indicate texture. The particle now ap-
proximately traces a streamline of the vector field. Spatially, par-
ticles are not generated if their starting positions are too close to
previous curves, say within a distance smin.

The vector field is calculated using the edge tangent flow
(ETF) [Kang et al. 2007], in which the vectors are perpendicular to
the image gradient. The initial force

−→
F is read from the vector field;

two particles with opposite forces are created at each separate lo-
cation with initial velocity zero. Possible initial point locations are
generated using a structure-based stippling method [Mould 2007].
Particles proceed in discrete timesteps, with position and velocity
updated with forward Euler. We maintain a separate timer (A) to
tell us when the force should be updated by reading from the vec-
tor field (e.g., we might update after 400 timesteps when A = 4.).
We maintain a discrete map to detect collisions between particles
and other curves: a particle stops when its position is occupied, any
other position in its 8-neighborhood is occupied, or it reaches the
boundary.

We have an ambiguity about the force direction, resolved by in-
specting the dot product of the current and previous force vectors.
Given a current force

−→
F 1 and a previous force

−→
F 0, we check that

−→
F 0 •

−→
F 1 > 0. If this is not satisfied, we flip the direction of

−→
F 1.

In this way, we prevent the curves from suddenly doubling back
on themselves. For a similar reason, we do not use the original
vector field from the image to do the calculations: we smooth the
field to remove noise and also to strengthen the main trend in tex-
tured areas. The smoothing is done using Kang et al.’s bilateral ap-
proach [Kang et al. 2007], which smooths among the vectors with
similar orientations under a 9× 9 window. The goal is to main-
tain good texture structure. Figure 9 shows a comparison between
different degrees of smoothing. Figure 9 (a) is a result without us-
ing smoothing, which is very noisy. We see progressively smoother
curves from (a) to (c), and consider the smoother curves, and cor-
responding tessellations, to be of higher quality for our purposes.



(a) Unsmoothed (b) Smoothed twice (c) Smoothed 5 times

Figure 9: The difference in smoothing (A = 4).

Figure 10: (a) Far away from the field. A = 8 with smoothing 5
times; (b) Son et al.’s line drawing.

We also adjust A to control the degree of faithfulness to the field.
With larger A, the particle diverts more from the original field. Fig-
ure 10 (a) shows this effect. Compared with Figure 9 (c), it looks
like straight lines. However, even if it is not faithful to the field it
can imply the underlying texture. Figure 9 (c) and Figure 10 (a) also
remind us of line drawings; Son et al. [2007] used a similar vector
field to draw line arts (shown in Figure 10 (b) ) but ours fill the
entire space to maintain texture information. Even without adding
color information, we can clearly see the flower.

Different initial distributions also affect our final effects. Figure 11
compares a random distribution of 9,803 stipples with a better
distribution from structure-aware stippling [Mould 2007] with the
same stipple count. In Figure 12 we see that the results (b) and (c)
are better than the one without consideration of structure details; (c)
shows intensity indication by using smin = 2+5∗I/255 to constrain
the minimum spatial separation, where I is the intensity value.

Figure 11: A random distribution and a better distribution from
Mould’s stippling.

In Figure 23 we color each tile by using the average colors of the
original image region. Our results nicely show the feather texture
for the eagle and the furry texture for the lion by using elongated
curved tiles, which also resembles the Tiffany glass in Figure 2 (a).
If we think the tiles are too big and want a similar effect to the
stained-glass mosaics in Figure 2 (b), we can do further subdivision.
After we have long parent curves, we emit new particles along these
curves, provided that the arc length exceeds a threshold (we use 50
here.). Also to maintain the spatial characteristics, the generation
is ordered from the start of the curve onward; the force directions
for the child particles are always perpendicular to their parent force
directions. The new particles alternate the sign of their initial direc-
tions, thus ensuring that tiles on both sides of the parent curve are
subdivided. Two highly-textured examples are shown in Figure 28.
Our results gracefully follow the flow trend of the texture.

(a) (b) (c)
Figure 12: The difference in distribution with the same stipple
count. A = 8 with smoothing 5 times. (a) Randomly; (b) Structure-
aware stippling without intensity indication; (c) Structure-aware
stippling with intensity indication.

We also apply our method to macaroni art, an art style typically
used by children, in which different objects (say, dry pasta) are
pasted onto a canvas to form an image. Macaroni examples are
shown in Figure 24, where 3D cylinders are placed along the curves,
POV-Ray is used to render them, and the resulting images show
their constituent curves very prominently.

5 Abstract and Natural Patterns

Our basic method is very appropriate for creating abstracts directly,
as we showed in Section 3. In this section, we expand on the basic
idea to create both purely abstract patterns and some textures re-
sembling structures in nature such as cracks, scales, and rivers. We
also exploit our method to create an arrangement of curves whose
apparent occlusions produce an illusion of an ambiguous 3D scene.
All the images in this section are built using the sequential method,
since it is easier to control both global and local effects. We also
make use of magnetic curves for the force calculation, as we are
more interested in the artistic stylization and not in the preservation
of an input image. A magnetic curve, essentially, is the trail of a
particle with charge q moving in a magnetic field

−→
B , thus experi-

encing the Lorentz force. We use a constant
−→
B = {0,0,−1}, which

generates a 2D curve forcing the particle to move in the xy plane.

−→
F = q−→v ×−→B (1)

The value of the charge q controls the curvature of the curve. If
we flip the sign of the charge, the curvature is also reversed. The
direction of the initial velocity provides our orientation control over
the curve. We use q = s ∗ f (t) to control the overall curve shape,
where s is a parameter to adjust the curvature magnitude. In the
following, if we do not specify s explicitly, it means s = 1. The
curve in Figure 3 uses f (t) = (500− t)0.8, called curve type I.

5.1 Splitting Technique

We introduce a splitting technique to represent both abstract and
natural patterns, similar in spirit to the work by Federl [2003], but
not based on physics. We randomly place an irregular trail in the
region first. We propose two controls for the splitting. One sugges-
tion is that if the curve exceeds the length threshold, it emits a few
new particles evenly at ∆l length (see Figure 13). The new particles
are spawned on alternating sides of the parent curve. Their direc-
tion is rotated from the tangent direction of the parent curve with
the same or similar angles. Each particle travels for an interval,
until a sufficient length of the curve is attained. Another sugges-
tion is that, after having the first curve, the process repeats for a
known number of stages, each time emitting a fixed number (n) of



particles along the previous curve and only stopping when the max-
imum number of stages is reached. The random irregular curve (as
curve type II) is generated by randomly choosing the sign of the
charge q while f (t) returns a random value uniformly taken from
the interval [0.00001,0.1]. This curve type is used in Figure 6 (a),
(b), (e) and (f) as well.
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Figure 13: The process for our splitting under length control.

(a) 90◦, sparse (b) 90◦, dense

(c) 45◦, sparse (d) 45◦, dense

(e) 30◦, sparse (f) 30◦, dense
Figure 14: Splitting I from length control and angle control (curve
type II). Left: ∆l = 100; Right ∆l = 50.

Figure 14 demonstrates the splitting results under the length con-
trol. Sparse versions (larger ∆l) are shown on the left side, while
dense tessellations (smaller ∆l) are shown on the right side. Fig-
ure 15 demonstrates the splitting results under stage control (n =
7). This process introduces a lot of irregularities and randomness
into the final effects. Sometimes the even spatial distribution is lost
(e.g., Figure 14 (e)) and big empty areas appear. Even then, be-
cause each child curve has similar starting angles along its parent
curve, and the same angle occurs frequently in this region, humans
can easily detect the similarities and group them into a texture. We
quickly discriminate each group of tiles based on the angles. Visu-

(a) 90◦ (b) 45◦ (c) 30◦

Figure 15: Splitting II from stage control.

ally, the length control provides better spatial control but the stage
control might be suitable for some branching phenomena.

We can use this process for creating shapes reminiscent of cracks or
leaves. As Federl mentioned, cracking in dried mud is commonly
seen splitting at 90 degree [Federl 2003]. Figure 14 (a) (b) and
Figure 15 (a) resemble this cracking phenomenon, while Figures 14
(f) and 15 (c) are more like leaves. Figure 1 (b) shows a simple
combination by putting our cracks on top of a painting generated
by the image parsing method [Zeng et al. 2009]. It nicely simulates
the craquelure seen in many old oil paintings. Figure 1 (a) shows
another example by introducing the colors from the artist’s work in
Figure 2 (a) to present an abstraction for tree leaves.

5.2 Stacking Technique

5.2.1 Scales

Because we think the splitting technique is sometimes too random
and irregular and we want more regular and organized patterns, we
introduce a stacking technique to generate scale patterns for snakes
or fish based on our basic sequential idea. Given a region and a
growth line, we calculate a priority map for all pixels. The pri-
ority is calculated to maintain the stacking order. Each step the
system pops out the location with the highest priority and grows a
curve (here called a scale). If the arc length of the curve is in the
proper range, we keep it; otherwise, we remove it and try the next
placement. We store an identification map to quickly find the next
position. After we have a valid curve, we mark the points inside
the scale and on the curve as invalid points (shown in Figure 16 as
grey and red respectively). The dark region indicates those points
too close to previous scales, where new curves cannot begin. The
blue marks the points with the highest priority to be chosen at the
next step. The process grows the patterns step by step consistent
with the assigned stacking direction. Figure 16 shows the process
to generate the scales along the curved path shown in Figure 17
(d). Figure 17 (b) and (c) show the scales grow straightly from the
top to the bottom with circular and wavy curves respectively; Fig-
ure 17 (e) and (f) maintain the curved path with two different sizes
of scales.

(a) 1 (b) 2 (c) 70 (d) 140 (e) 250
Figure 16: The growth for scales.

5.2.2 Rivers

There are also numerous elongated textures in nature, such as rivers,
hair or feathers, which would be very difficult to simulate by pre-
vious region-based methods. We here demonstrate our creation



(a) (b) (c)

(d) (e) (f)
Figure 17: Four scale examples. (a) The stacking direction for the
top row; (b) Circular-like scales; (c) Wavy scales; (d) The stacking
direction for the bottom row; (e) Small scales; (f) Large scales.

for the rivers. Our process starts from a random distribution. At
each point, we try to grow a wavy curve along the horizontal direc-
tion until it stops when it meets with previous curves or the region
boundary. The growth path of stacking is incrementally from bot-
tom to top. If the particles are too close to the previous trails, they
die. The short trails are not preserved. The curves appear as the
river surface. The top row of Figure 18 shows two river illustra-
tions. Instead of growing a single curve at a point, we can also emit
a group of particles at the same position and carefully grow a group
of similar curves to illustrate artistic waves. Figure 18 (bottom)
illustrates some curly waves by drawing the curly curves first and
combining with previous process for the wavy curves later. They
provide artistic illustrations for the river.

Figure 18: Sparse and dense textures for wavy and curly rivers.

5.2.3 3D Indication

In this subsection, we are going to show a powerful aspect of our
idea. The key element of our basic idea is to encompass regions
with curves. Rather than being purely 2D regions, a region in an
image can also be thought of as a facet of an object’s surface in
3D. In this way, a group of curves can imply the shape of a surface.
Geometrically, if we slice a 3D surface with a plane along a chosen
axis repeatedly, there should be a collection of curves generated
at the slicing intersections. Actually, it is probably the case that
when an artist tries to represent this 3D surface, he can sketch this

surface with a group of curves aligning similar to the axis and draw
them in the slicing order. We can simulate this process easily using
our basic idea. Figure 19 (a) gives a slicing (or called stacking)
path and an order. We construct a group of circular curves along
this configuration line sequentially, creating the illusion of a 3D
cylinder, shown in (b). Figure 19 (c) uses a group of larger circular
curves to convey the impression of larger cylinder. An illusion of
a small flat cylinder in (d) is obtained by a slightly flatter curve
( f (t) = 0.001 ∗ (t− ((int)(t/500)) ∗ 500), identified as curve type
III). We can complicate our slice configuration, e.g, as shown in
Figure 26; also, we can complicate the curve condition, e.g., as
shown in Figure 27. This demonstrates that our method conveys a
sense of even more complicated surfaces, and that this concept of
3D suggestion is a way to attain interesting abstracts as well.

(a) (b)

(c) (d)
Figure 19: 3D indication I from stacking. (a) A stacking path;
(b) Circular curves (curve type I, s = 4); (c) Circular curves (curve
type I, s = 1); (d) Flattened circular curves (curve type III, s = 4).

6 Discussion

We explored our basic tessellation method, applying it to produce
mosaics for texture indication and to simulate some abstract and
natural patterns automatically. The use of the particle system and
the smoothed vector field provides texture indication for mosaics.

(a) (b) (c) (d) (e)
Figure 20: Comparisons with previous methods. (a) Adobe Photo-
shop; (b) GIMP; (c) Hausner’s method; (d) Artificial mosaics; (e)
Our method (A = 2, smoothed twice, 993 tiles).

In Figure 20, we show comparisons with commercial software
(Adobe Photoshop and GIMP), and previous region-based meth-



ods such as traditional mosaics [Hausner 2001] and artificial mo-
saics [Di Blasi and Gallo 2005] in NPR. None of them can preserve
highly textured areas, for example, Lena’s hair or feather. Our re-
sult, despite using a smaller number of bigger tiles, maintains the
hair texture nicely. The elongated and irregular tiles in our tessella-
tion are very difficult for other methods to produce. However, our
result is less attractive in smooth areas, such as Lena’s face, and we
still need to improve curve quality in such regions.

Our basic idea is very simple and provides tremendous flexibility
to achieve different purposes. In this paper, we put more attention
on the sequential method since it can more directly control every
growth of the trails. However, it is more possible for the parallel
method to produce regularity in the tessellation. P-Method can be
used for our mosaic goal too. Figure 21 shows an example by using
the same distribution as Figure 12 (b) and (c). The quality is highly
dependent on the initial distribution. While the P-Method better
respects the direction field, the S-Method is more likely to produce
long curved tiles, which are instrumental in fostering a resemblance
to Tiffany glass.

Figure 21: Mould’s stippling with P-Method.

Our demonstrations for abstract and natural patterns should be fur-
ther explored for textures such as hair, feathered wings, flowers, and
other botanical elements. Additional applications can be invented
by future users and researchers.

We show some examples of illusory three-dimensional structures
in Section 5.2.3. Occlusion is one of the most powerful visual cues
for 3D reconstruction, and the curve termination rules imitate oc-
clusion. This synthesis approach is completely opposite to many
existing non-photorealistic rendering techniques: instead of look-
ing for silhouettes or creases from 3D models or images, it con-
structs apparent objects by a procedural organization of curves. We
did not much explore the management of intersections in this pa-
per, but we consider it a very intriguing future direction. Figure 22
(a) just randomly draws some groups of wavy curves in a region.
Each group looks like a long leaf. If we do a simple intersection
organization by controlling the order of each group to draw, we can
show a striking depth illusion. If the multiple curves are partly hid-
den by previously drawn groups of curves, we are not drawing the
excluded parts. This simple example shows near leaves obstruct far
leaves in (b). This approach gives us a very strong feeling of depth.
See also (c), which fills the entire region by this kind of intersection
testing.

We have somewhat limited the curve variations in the images we
showed. When the curves are too variable, the assignment for the
path and the particle orientation become trivial and the curve prop-
erties will determine the final effects of the tessellations. We show
a Jigsaw-like example in Figure 6 (c) and (d) which are using vari-
able curves: f (t) = sgn(AngleChange( f (t0)) > θ(t))) ∗ ( f (t0) +
Random(0.0001,0.01)) as curve type IV, in which sgn(P) returns 1
if P is true and -1 otherwise. It is difficult to detect any influence

Images resolution points curves tiles time (s)
Figure 12 (b) 400×468 9,803 3,164 3,579 5.5
Figure 21 400×468 9,803 12,608 8,750 13.9
Figure 23 (d) 400×468 17,997 3,470 3,554 7.2
Figure 1 (d) 500×326 17,832 2,335 2,523 8.6
Figure 24 (d) 660×560 17,300 5,385 6,997 23.7
Figure 28 (b) 622×800 16,791 6,046 7,298 29.5
Figure 28 (a) 800×935 19,571 13,228 15,613 54.8

Table 1: CPU processing time for mosaics.
from the direction assignment (D1 and D2); instead, the small-scale
properties of the curve dominate visually.

Since we use a discrete map for the intersection checkup, we al-
ways let the particle run a few steps (say 5) at the beginning. Oth-
erwise, collisions with the parent curve make it too hard for curves
to grow. But if we are placing a lot of particles, it may disobey our
definition; see Figure 12 (c), where leaking occurs in the very dark
areas. Another limitation is that we should improve the quality at
the intersections when two curves meet. These are outstanding im-
plementation issues but do not demand a change in the underlying
methods.

Using an Intel Core Duo CPU E8400@ 3.0GHz with 3GB RAM,
most of our abstract or cracking results are produced in around
0.1−0.5 seconds. But if we used a distance map for spatial adjust-
ment, it takes longer, around 5-14 seconds. We show our CPU pro-
cessing time for mosaic generations in Table 1. The performance is
similar to previous mosaic methods.

(a) (b) (c)
Figure 22: 3D illusion from exclusion controls.

7 Conclusion and Future Work

In this paper, we gave an idea to build a tessellation from colliding
curves from a particle system. To further validate our idea, we intro-
duced a texture-indication scheme. We gave numerous demonstra-
tions of natural pattern creation, which do not have either regular
tiles or exact shapes. This kind of tessellation should be very useful
in applications for nonphotorealistic rendering, texture generation,
and artistic abstracts. As for future work, we think the study of a
group of particles might be very interesting and the management
for the collision intersections might bring very convincing illusions
of 3D shapes.
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