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Abstract

We present a method for extracting a lattice from near-
regular texture. Our method demands minimal user inter-
vention, needing a single mouse click to select a typical tex-
ton. The algorithm follows a four-step approach. First, an
estimate of texton size is obtained by considering the spac-
ing of peaks in the auto-correlation of the texture. Second, a
sample of the image around the user-selected texton is corre-
lated with the image. Third, the resulting correlation surface
is converted to a map of potential texton centres using non-
maximal suppression. Finally, the maxima are formed into
a graph by connecting potential texton centres. We have
found the method robust in the face of significant changes
in pixel intensity and geometric structure between textons.

CR Categories: I.3.8 [Computer Graphics]: Applica-
tions I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object Recognition

1 Introduction

A regular texture is formed from a regular congruent tiling
of textons. If the tiling statistically deviates from regularity,
either by texton structure, colour, or size, we call the texture
near-regular [Liu et al. 2004b]. If we continue to perturb the
tiling, the texture becomes stochastic. The set of possible
textures that lie between regular and stochastic make up
the texture spectrum: regular, near-regular, irregular, near-
stochastic, and stochastic (see Figure 1).

Given a near-regular texture, we propose a method of ex-
tracting a lattice defining the placement and structure of
textons. The texton centres will be connected by edges in
the lattice following the logical structure of texton place-
ment. More precisely, for a texture T , we wish to create
a graph G = (V, E) dependent on T , where V is a set of
texton centres, and E = (vi, vj) is a set of edges, where
vi, vj ∈ V . Each edge e ∈ E connects texton centre v ∈ V to
its k-nearest perceptually logical neighbours, where k varies
depending on the local texture structure surrounding v.

2 Related Work

Texture regularity is difficult to quantify. Statistical meth-
ods using co-occurrence matrices [Starovoitov et al. 1998;

Haralick 1979; Connors and Harlow 1980] have proven diffi-
cult to extend over the texture spectrum. Auto-correlation
based techniques [Chetverikov 2000; Leu 2001; Lin et al.
1997] have led to the similar notions of auto-correlation pro-
file [Leu 2001] and contrast function [Chetverikov 2000]. The
insight behind the two ideas is to look at a profile of a tex-
ture’s auto-correlation surface along one or more axes. The
degree of regularity in the spacing and height of maxima
along a profile is used to quantify texture regularity. Clus-
tering of auto-correlation surfaces performed over a set of
Gabor filtered images has been used to classify texture ac-
cording to regularity for the current iteration of the MPEG-7
image standard [Manjunath et al. 2000].

Previous and concurrent work on identifying textons follows
three general approaches: colour thresholding, filtering, and
probabilistic learning. Filtering has shown promise in iden-
tifying repeating textons [Malik et al. 1999; Blostein and
Ahuja 1989; Benke 2000]. Malik et al. [1999] use a bat-
tery of 36 filters of different size and orientation to create
a vector of filter responses for each location in the texture.
Clusters in this high-dimensional feature space represent fre-
quently occurring elements in the texture. This work shows
promise in identifying textons, though it is a computation-
ally demanding process. Machine learning may be used to
discover texture model parameters when viewing texture as
an observation of some underlying random process, such as
a Markov or Gibbs random field [Gimel’farb 1999; Guo et al.
2003; Zhu et al. 2005].

Hamey [Hamey 1989] proved that, for regularly repeating
patterns, the shortest pair of vectors defining the frequency
of texton occurrence can translate a texton over the plane,
creating a tiling or regular texture. In the sequel, we call this
pair translation vectors. Lattice extraction for regularly re-
peating textures is close to becoming a solved problem using
this proof and a generalised Hough transform over transla-
tion vector intersection points [Liu et al. 2004a; Tuytelaars
et al. 2003]. Unfortunately, as a texture deviates from regu-
larity, the translation vector proof fails to hold and the gen-
eralised Hough transform fails to connect translation vector
intersections. The work presented here overcomes these hur-
dles to extend lattice extraction from regular to near-regular
texture.

3 Lattice Extraction

We have established an algorithm that successfully extracts a
lattice from regular and near-regular texture. The algorithm
can be divided in four parts: texton size estimation, sample
correlation, peak extraction, and lattice construction.

3.1 Texton Size Estimation

Lattice extraction, under our algorithm, requires a single
measure of texton size. This measure will necessarily be
an estimate; the definition of near-regular texture implies
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Figure 1: The texture spectrum.

texton size variation. We obtain our size estimate using
auto-correlation. The texture’s auto-correlation surface is
computed by multiplying the Fourier transform of the image
by its matrix transposition, and inverse Fourier transforming
the result.

The auto-correlation surface is unfortunately noisy, and
peaks in the surface are not easily extracted. Fortunately,
the work of Lin provides a convenient way to smooth an
auto-correlation surface using a Gaussian filter, where the
spread parameter, σ, is iteratively increased until the num-
ber of peaks in the surface does not decrease between iter-
ations [Lin et al. 1997]. We leave the size of the filter as a
parameter of the algorithm, though we have achieved good
results with a constant 5 × 5 filter. Figure 2(a) depicts a
near-regular texture, and Figure 2(b) depicts a smoothed
correlation surface.

(a) (b)

Figure 2: A near-regular texture with texton size estimate
gained from correlation. 2(a): the original image, 2(b):
smoothed auto-correlation surface and texton size estimate.

Having computed a smooth auto-correlation surface, the di-
rection of the translation vectors can be computed using the
method of Leu [Leu 2001]. The largest peak in the auto-
correlation surface is the location where the image is exactly
correlated with itself, which serves as the origin of the trans-
lation vectors. The next largest peak in the surface is the
maximum correlation of the image with a translated version
of itself. The vector from the origin to this point is the
the primary translation vector. Similarly, the vector from
the origin to the third largest peak in the auto-correlation
surface is the secondary translation vector. Figure 2(b) de-
picts a texton size estimate determined by the primary and
secondary translation vectors.

3.2 Sample Correlation

The next stage of lattice extraction produces a surface with
maxima corresponding to texton centres. Such a surface may

be computed using frequency space analysis, correlation, co-
occurrence matrices, or object recognition; we choose corre-
lation. We have found, and recent literature confirms [Liu
et al. 2004a; Tuytelaars et al. 2003], that correlation is a ro-
bust and effective method for detecting repetitions in regular
and near-regular texture.

To produce a correlation surface with peaks corresponding
to texton centres, a sample texton is correlated with the
input texture. Texture locations displaying characteristics
similar to the sample texton produce peaks in the correlation
surface. Techniques have been developed that isolate texton
samples in certain contexts [Malik et al. 1999; Leung and
Malik 1996; Schaffalitzky and Zisserman 1999; Malik et al.
2001], but no general purpose method has been found. We
therefore require user intervention to select a texton sample;
the user clicks on the centre of a “typical” texton. The
texton sample is created by extracting a window from the
texture with size specified by the approximate texton size.
The window is rectangular, with axes parallel to the image
axes, and centred at the user-selected point. This sample
is correlated with the texture to produce a surface. The
correlation surface is then smoothed using Lin’s algorithm,
which serves a dual purpose: eliminating unnecessary peaks,
and improving peak location estimates. Figure 3 depicts the
sample correlation process.

(a) (b) (c)

Figure 3: Correlation of a texture with a texton sample.
3(a): the user selected texton centre, 3(b): sample window
derived from texton centre and size estimate, 3(c): smoothed
correlation surface.

3.3 Peak Extraction

Having found a surface with peaks closely corresponding to
texton centres, we can extract peaks to obtain locations of
potential texton centres. The peaks are termed potential tex-
ton centres because the extraction process will sometimes re-
turn a peak in the surface that is not located at a perceptual
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texton centre.

We use non-maximal suppression to extract peaks. The re-
sults of non-maximal suppression are sensitive to the choice
of neighbourhood, and care must be taken to choose a neigh-
bourhood appropriate to the task. In our algorithm, the
neighbourhood is dependent on approximate texton size,
so, in the ideal case, one potential texton centre will re-
side within each texton of the image. Figure 4 shows the
non-maximal suppression result.

(a) (b)

Figure 4: Non-maximal suppression of the partial correlation
surface extracts texton centres. 4(a): peaks isolated through
non-maximal suppression, 4(b): partial correlation peaks as
potential texton centres.

3.4 Lattice Construction

We have developed an iterative lattice construction algo-
rithm. The algorithm makes use of a queue, storing actual
texton centres, which are potential texton centres included
in the final lattice. Each texton centre in the queue is pro-
cessed by extending the lattice from this centre to a poten-
tial texton centre not in the lattice. Potential texton centres
newly attached to the lattice are inserted into the queue to
be processed at a later time. The processing stops when
the queue becomes empty, signalling that no other potential
texton centres can be added to the lattice.

(a) (b)

(c) (d)

Figure 5: Lattice construction. 5(a): the user selected tex-
ton centre, 5(b): a translation vector extended from a known
texton centre, 5(c): a search centred at the translation vec-
tor endpoint, 5(d): an edge added to the lattice.

In more detail, the algorithm first inserts the point initially
selected by the user into the queue (Figure 5(a)). A trans-
lation vector is extended from this point (Figure 5(b)), and
a search is performed in an elliptical region centred at the
translation vector’s endpoint (Figure 5(c)). If a potential
texton centre lies within this ellipse, an edge is created and
the potential centre added to the lattice and inserted in the
queue (Figure 5(d)). A potential texton centre is added to
the lattice for each translation vector and negated transla-
tion vector. Figure 6 depicts a complete iteration of the
lattice extraction algorithm. Overlaying the lattice on the
original texture solves the problem of lattice extraction from
near-regular texture.

(a) (b)

(c) (d)

Figure 6: One iteration of the lattice extraction algorithm.

A few notes about our algorithm. First, the search ellipse is
defined using the ratio of the size of the translation vectors.
We initially create a small search ellipse, and iteratively in-
crease the major and minor axes, until a potential texton
centre is found. If more than one centre lies in the search
ellipse, the centre with largest correlation value is added to
the lattice. Second, if any part of the search ellipse ever lies
outside of the boundary of the image, we cancel the search.
Third, if a known texton centre lies within the search el-
lipse, we automatically connect to this centre regardless of
the contents of the remainder of the search ellipse.

4 Results and Conclusion

Figure 7 depicts some results from our lattice extraction al-
gorithm. Figure 7(a) shows a perceptually logical lattice
extracted from a texture with significant texton variation in
geometry, scale, and pixel intensity. Figure 7(b) shows a
real-world example of lattice extraction. Figure 7(c) shows
how the dominant texton is connected in the lattice. Figure
7(d) depicts a successful lattice extraction under varying tex-
ton geometry. Finally, the honeycomb geometry of Figure
7(e) poses no problems for our algorithm.

Although regularity quantification and texton size estima-
tion have previously been studied, the application of the two
areas in the same work provides a novel algorithm for lat-
tice extraction from near-regular texture. Furthermore, the
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(a) (b) (c) (d) (e)

Figure 7: Lattice extraction results. See Section 4 for discussion. Figure 7(a) is from the database of DeBonet. Figure 7(b) is
from the database of Simoncelli. The remaining figures are from the Brodatz texture album [Brodatz 1966].

graphing algorithm we have developed is a new contribution
to computer graphics, providing efficient construction of a
perceptually logical lattice. The result may be used to fur-
ther automate texture synthesis, or be applied in novel ways
to problems such as texture blending.

Though observed failure cases are few, we wish to eliminate
inaccuracies attributed to improper texton size estimation.
In the future, we hope to extend our algorithm to accom-
modate texture from a wider range of the texture spectrum.
Specifically, we wish to extract a lattice from irregular tex-
ture.
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