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a b s t r a c t 

We present a novel approach for 3D shape synthesis from a collection of existing models. The main idea 

of our approach is to synthesize shapes by recombining fine-grained parts extracted from the existing 

models based purely on the objects’ geometry. Thus, unlike most previous works, a key advantage of 

our method is that it does not require a semantic segmentation, nor part correspondences between the 

shapes of the input set. Our method uses a template shape to guide the synthesis. After extracting a set 

of fine-grained segments from the input dataset, we compute the similarity among the segments in the 

collection and segments of the template using shape descriptors. Next, we use the similarity estimates to 

select, from the set of fine-grained segments, compatible replacements for each part of the template. By 

sampling different segments for each part of the template, and by using different templates, our method 

can synthesize many distinct shapes that have a variety of local fine details. Additionally, we maintain 

the plausibility of the objects by preserving the general structure of the template. We show with several 

experiments performed on different datasets that our algorithm can be used for synthesizing a wide 

variety of man-made objects. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

There is an ongoing need for digital content in the form of 3D

models in fields such as entertainment and product design. How-

ever, the manual creation of 3D models is often a difficult and

time-consuming task. Hence, facilitating the creation of 3D mod-

els is a fundamental problem in computer graphics. A popular ap-

proach for the automatic creation of novel 3D objects is to reuse

parts from existing shapes. Several works on shape synthesis pro-

pose to extract and recombine parts from a dataset of existing ob-

jects [1–6] . Most of these techniques make two important assump-

tions about the input models and their parts. First, the input ob-

jects should be segmented into coarse semantic parts, that is, parts

with a meaningful semantic meaning, and possibly a specific func-

tionality. Second, a correspondence or consistent labeling should ex-

ist among the different parts of the input shapes. 

One shortcoming of these synthesis methods is that the gener-

ated shapes may display a limited range of variations in their fine

geometrical details, since semantic parts are often large, coarse and

exchanged as a whole [7,8] . Furthermore, although much progress

has been made to obtain semantic segmentations of 3D shapes

[9,10] , computing highly accurate and consistent segmentations
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nd part correspondences for large collections of shapes is still a

hallenging problem [11,12] . 

In our work, we propose to synthesize shapes by exchang-

ng fine-grained parts among a set of input shapes. As shown in

ig. 1 , the use of fine-grained parts allows us to generate shapes

ith large variation in fine geometric details, which is not achiev-

ble with methods that exchange semantic parts as a whole.

ig. 2 shows a comparison between a typical semantic segmenta-

ion of a table, and the fine-grained segments that we use for syn-

hesis. The recombination of fine-grained segments is guided by

he geometric similarity of the segments, enabling us to exchange

egments that have the same overall geometry but which can pos-

ess variations in their fine details. The recombination guided by

eometry allows us to even exchange segments between models

rom different families. 

Moreover, we do not require a semantic segmentation nor a

art correspondence as input, since the fine-grained parts can

e obtained by analyzing the local geometry of the shapes, as

one by traditional geometry-based segmentation methods [9] .

ur main requirement on the segmentation is that the shape seg-

ents should possess roughly the same size. However, one prob-

em arising from the elimination of part semantics is that we re-

uire an alternative mechanism to guide and constrain the syn-

hesis of a new shape. Thus, we propose to use for guidance an

nput template, which can be a simple configuration of geometric

roxies or an example shape. The template constrains the topology

https://doi.org/10.1016/j.cag.2018.05.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2018.05.016&domain=pdf
mailto:diego.gonzalez@carleton.ca
mailto:oliver.vankaick@carleton.ca
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Fig. 1. Scene created with shapes synthesized by our method. Note how the three 

shapes exhibit a variety of fine details and a coherent structure. 

Fig. 2. Comparison of two segmentations for the table model shown in the in- 

set. Left: typical semantic segmentation. Right: segmentation into fine-grained seg- 

ments used in our work. 

o  

p  

m  

a

 

u  

O  

e  

g  

s  

a  

s  

m  

p  

w  

t  

2

 

o

 

t  

a  

[  

[  

o  

(  

s

 

t  

n  

j  

c  

m  

s

 

e  

[  

c  

d  

e  

m  

s  

p  

o  

h

 

t  

a  

w  

[  

o  

s

 

t  

o  

i  

e  

p  

l  

s  

e  

S  

M  

s

 

v  

t  

e  

t  

A  

t  

s

 

s  

a  

a  

y  

i  

l  

m  

i  

d  

f  

t  

fi  

t  

m  

e

 

s  

p  

K  

t  

e  

y  

t  

e  

c  

fi

 

w  

i  

g  

h  

v  
f the synthesized shape, which helps to ensure a certain level of

lausibility in the generated shapes, and provides a domain for for-

ulating the synthesis of a shape as a graph assignment problem,

s we discuss in Sections 3 and 5 . 

In summary, we present a pipeline for synthesizing 3D shapes

sing fine-grained segments extracted from an input set of shapes.

ur method does not require a segmentation of the input mod-

ls into semantic parts, nor a part correspondence, but mainly a

uiding template and a segmentation of a collection where the

egments are consistent in size, which is easier to obtain with

utomatic or semi-automatic methods. Specifically, for the results

hown in this paper, we employ a semi-automatic segmentation

ethod. Moreover, we demonstrate the effectiveness of our ap-

roach by presenting and analyzing a variety of results synthesized

ith our method. In addition, we explore variations of our pipeline

hat enable us to control different aspects of the shape generation.

. Related work 

In this section, we discuss the previous work most related to

ur method, i.e., shape synthesis and segmentation approaches. 

Shape synthesis . Earlier approaches for synthesis employed sta-

istical shape models to generate shapes, according to the vari-

bility learned from a collection. For example, Blanz and Vetter

13] developed a deformable model of 3D faces, while Allen et al.

14] introduced a statistical model of human bodies. These meth-

ds are quite general as they are applicable to any type of shape

biological, man-made), but require a compatible mesh with corre-

pondences across the entire collection. 

The seminal work by Funkhouser et al. [1] proposed a system

hat allows the user to browse a library of 3D models and compose

ew shapes by assembling together parts of the existing 3D ob-

ects. This part reuse framework is widely applicable to objects that

an be decomposed into parts in a meaningful manner, such as

an-made objects. Thus, much of the subsequent work on shape

ynthesis has been based on this idea. 

One line of work has proposed interfaces that facilitate the

xtraction and reuse of shape parts. For example, Kraevoy et al.

15] use compatible segmentations of objects to enable part ex-

hange, while Sharf et al. [16] and Takayama et al. [17] intro-

uce interfaces that facilitate the selection of part or regions to be
xchanged between shapes. Chaudhuri et al. [18] incorporate se-

antics into this framework with a learning approach, to suggest

uitable part replacements while building a shape from existing

arts. Recently, Jaiswal et al. [19] and Sung et al. [20] also devel-

ped suggestion mechanisms based on learning approaches which

owever do not require labeled parts. 

Another line of work proposes methods that automatically syn-

hesize shapes while requiring little to no user input. A few works

re based on the idea of blending existing shapes together as a

hole, such as the methods of Jain et al. [3] and Alhashim et al.

7] . Blending is advantageous in that it can generate a variety of

bjects from two input shapes, however, these methods require a

emantic segmentation of the input models. 

Moreover, much of the recent work on automatic shape syn-

hesis focuses on learning statistics of part co-occurrence based

n a semantic segmentation of the objects in a collection, and us-

ng this information to automatically generate objects. Kalogerakis

t al. [4] and Huang et al. [2] introduce approaches that select

arts to compose a shape based on the co-occurrence of semantic

abels. Zheng et al. [21] exchange specific arrangements of parts to

ynthesize objects that satisfy certain functionalities, while Huang

t al. [22] extend this approach to non-symmetric arrangements.

u et al. [8] exchange more complex substructures among shapes.

oreover, Xu et al. [6] use an evolution-based approach to synthe-

ize shapes. 

A few methods also focus on the specific problem of generating

alid configurations of shape parts, i.e., defining the relative posi-

ioning and orientation of the parts that compose the shapes. Fish

t al. [23] and Yumer and Kara [24] learn models from a collec-

ion of shapes that capture the probability of part configurations.

verkiou et al. [25] represent the shapes of a dataset as box-like

emplates which can be used for exploration of the set but also for

ynthesizing new objects via part deformation. 

The main requirement of all of these blending and automatic

ynthesis methods is a semantic segmentation of the objects in the

nalyzed collections. Often, a semantic labeling of the segments is

lso required. Although there has been significant work in recent

ears for obtaining such segmentations automatically [10] , obtain-

ng an accurate segmentation of a large collection is still a chal-

enging problem with much room for improvement to the seg-

entation accuracy [12] . In contrast, the objective of our method

s to synthesize shapes by exchanging parts obtained with a less

emanding type of segmentation, which can be computed mainly

rom geometric constraints without involving semantics. Moreover,

he use of fine-grained segments in our work enables to exchange

ne details between objects and increase the variability in the syn-

hesized shapes, which is not possible when using semantic seg-

ents, as these are often larger and more coarse in relation to the

ntire shape. 

Finally, a few methods also aim to extract parts that can be

uitable for exchange, in a sense, treating the segmentation and

art exchange problems together. Bokeloh et al. [26] , and later

alojanov et al. [27] , discover a shape grammar that can be used

o generate the input shape and, subsequently, novel objects. Liu

t al. [5] combine the discovery of shape grammars with the anal-

sis of substructures for shape synthesis. Although the parts ex-

racted by these methods are not semantic in nature, the discov-

red parts tend to be large as the goal of these methods is to dis-

over the smallest set of elementary parts. Thus, the exchange of

ner details is also difficult to achieve. 

Shape segmentation . There has been a significant amount of

ork in shape segmentation, where the goal is to decompose an

nput object into meaningful parts. Much of earlier work employed

eometric criteria combined with clustering or region growing

euristics to partition a single input object into parts, as sur-

eyed by Shamir [9] and more recently by Theologou et al. [10] .
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Fig. 3. Overview of our 3D shape synthesis approach. 
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More contemporary approaches make use of learning to incor-

porate prior knowledge about the desired segmentation, typically

given in the form of example segmented shapes. Notable works in

this area include the learning segmentation method of Kalogerakis

et al. [28] and recent works that perform the learning with deep

networks [11] , also targeting a hierarchical segmentation [12] . Al-

though most of the literature has focused on the extraction of se-

mantic segments, the existing approaches can also be leveraged to

decompose shapes into segments with application-specific require-

ments [9] , as we discuss in Section 4 for the segmentation required

by our method. 

3. Overview 

Our approach is summarized in the overview shown in Fig. 3 .

The input to our synthesis pipeline is a set of triangular meshes.

We start by obtaining a point cloud for each mesh by sampling

points from the triangles of the mesh. Similarly to recent shape

analysis methods [29–31] , we opt to work with point cloud repre-

sentations to alleviate problems in our analysis that can be caused

by the presence of non-uniformly sampled geometry and non-

manifold shape structures. Next, we segment each point cloud into

fine-grained segments with a semi-automatic method, generating

a pool of parts that can be used for synthesis. Then, we compute

a set of descriptors to represent each segment, and we use these

descriptors to define a similarity metric for the comparison of seg-

ments. 

To synthesize a shape, we take as input a geometric tem-

plate representing the general structure and topology of the tar-

get shape. In practice, the template is a shape segmented in the

same manner as the collection. We define a graph based on the

part structure of the template, and pose the synthesis as a proba-

bilistic sampling of segments. Our goal is to assign segments from

the pool of parts to the nodes of the graph, in order to maximize

a shape energy . This energy takes into account the similarity be-

tween the template and sampled segments, in the form of a unary

term, as well as the consistency between neighboring segments,

captured by a pairwise term. 

Finally, after sampling the segments that constitute the shape,

we perform a series of geometric operations to align the segments

and ensure that we obtain a plausible shape as output. At the end

of this process, we obtain a shape that respects the topology of

the template and possesses a consistent structure, while containing

local geometric variations. Since our method can consider a large

set of fine-grained segments, we can generate different variations

for the same template by sampling multiple shapes according to

the shape energy. 

Note that the set of descriptors used for sampling the segments

capture the overall geometric properties of the segments, but they

are relatively insensitive to differences in the fine details of the

parts. Hence, the segments sampled by our method preserve the

general form of the template while leading to variations in the ge-

ometry of the synthesized shape. 
. Extraction of fine-grained segments 

In this section, we explain how we pre-process and segment

he input collections of shapes used for synthesis, while we de-

cribe our synthesis approach in detail in Section 5 . 

Pre-processing . The input to our method is a set of triangular

eshes, where we orient all the meshes consistently. After the

lignment, the +Y axis corresponds to the upward direction of the

bjects, and the +X axis to the frontal direction. We perform the

lignment manually, although it would be possible to incorporate

utomatic alignment methods [32] into our pipeline. In addition,

e normalize our shapes in scale, so that the axis-aligned bound-

ng box of each shape is a cube centered at the origin where all

oint dimensions are in the range [ −1, 1]. 

Point sampling . We transform each input mesh into a point

loud, using the sampling algorithm described by Osada et al. [33] ,

hich samples points from the triangles of the mesh without bias-

ng the sampling by the shape of the triangles. For all the experi-

ents that we discuss in this work, we sampled N = 15 , 0 0 0 points

rom each mesh. During the sampling, we also compute the normal

f each face, and associate this normal with each point sampled

rom the given face. We use the normals associated to each point

o compute some of our descriptors, as we describe in Section 5 . 

.1. Fine-grained segmentation 

From each point cloud computed from the input meshes, we

erform a segmentation that generates a set � of fine-grained seg-

ents that we use in our synthesis process. Our fine-grained seg-

entation has two main goals: (i) to provide segments that cap-

ure fine geometrical details of the shapes, such as ornaments and

alient features, which can then be transferred to the synthesized

hapes; and (ii) to provide segments that are consistent in size

cross all the shapes of the input set, so that they can be easily

eused for the generation of novel shapes. 

Although the segmentation of 3D shapes is a fundamental com-

onent for applications in diverse areas such as geometric model-

ng and shape analysis, obtaining a meaningful segmentation of a

D shape is still a challenging task [10,11] , especially when a con-

istent segmentation of different 3D objects of the same class is re-

uired. Moreover, most works about shape segmentation presented

n the literature are tailored for computing semantic segments for

D meshes, while our method employs fine-grained segments ex-

racted from a point cloud. 

Thus, to obtain a segmentation that satisfies our requirements,

e currently segment the input shapes with a semi-automatic

ethod, based on an interactive program for segmentation of point

louds. Fig. 4 shows the interface of our program and an exam-

le of a fine-grained segmentation obtained with the program. Our

rogram provides a set of high-level tools that the user can employ

o easily extract fine-grained segments. The user can select a set

f points from a point cloud using a simple selection box drawn
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Fig. 4. Our interactive tool for point cloud segmentation and an example of a fine- 

grained segmentation obtained with the tool. 
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irectly on the screen, and assign all the points that project onto

he box to a segment. 

In addition, our segmentation interface provides an option for

erging two or more segments, as well as an option for splitting

n existing segment into smaller segments of a given size. Finally,

ur system can take as input point clouds that have already been

re-segmented into coarse semantic parts with an external tool.

n our study, we pre-segmented a portion of the meshes with the

oint cloud segmentation method of van Kaick et al. [34] , which

artitions models into approximately convex segments. By com-

ining all of these tools together, the user can segment the shapes

nto segments of consistent size. 

In this paper, we focus on how to use the set � of fine-grained

arts to synthesize a variety of man-made shapes. Thus, we leave

he study of computing consistent fine-grained segmentations in a

ully automatic manner for future work. Nonetheless, we note that

 segmentation into fine-grained segments poses less demands on

he development of the segmentation method, as the generated

arts do not need to satisfy semantic requirements, but only match

n expected type of geometric boundary and size. Thus, the devel-

pment of such a segmentation method is expected to be an easier

ask in comparison to a fully semantic segmentation. We discuss

lternatives for the automatic extraction of our fine-grained seg-

ents in Section 7 . 

Furthermore, our program also allows the user to mark pairs of

egments having reflectional symmetry [35] . These annotations let

s determine the symmetry relations of our input shapes, and gen-

rate novel shapes where these relations are preserved. Similarly,

he user can employ our segmentation system to create annota-

ions about the principal axis of orientation of each fine-grained

art. We employ the annotations about the principal axis of each

art to compute a rotation between each segment of the tem-

late and the corresponding segment selected to generate a new

D shape in a consistent manner, as we will describe in the fol-

owing section. 

. Synthesis based on fine-grained parts 

In this section, we explain the details of how we employ the

et � of fine-grained segments to generate man-made shapes. 

.1. Shape descriptors and similarity metric 

We use a set of shape descriptors to estimate the similarity be-

ween two fine-grained segments. The similarity is used to guide

he shape synthesis, as we describe in Section 5.3 . Our descriptors
ncode several characteristics of the overall geometry of each seg-

ent, while at the same time being insensitive to the fine details

f the parts. We classify our descriptors into two types: point-level

escriptors and segment-level descriptors. 

oint-level descriptors. We capture the distribution of the values

f each point-level descriptor using histograms. We employ four

oint-level descriptors: (i) The Point Feature Histogram (PFH) [36] ,

hich captures the overall variation in the orientation of the seg-

ent’s surface by using the normals that we associated to each

ampled point; (ii) The mass distribution of the segment, given by

he distribution of the points in 3D space [37] ; (iii) The volume

f the segment obtained using the Shape Diameter Function (SDF)

38] , where we adopt the method of van Kaick et al. [34] to com-

ute the SDF for a point cloud; (iv) The surface variation , which

aptures the curvature of points in the segment in a robust man-

er [39] . 

egment-level descriptors. We make use of three segment-level de-

criptors: (i) The overall geometry ( G ), which allows us to esti-

ate how linear, spherical, or planar is the shape of each segment

30,40] ; (ii) The relative position ( P ) of the segment with respect

o its containing shape [37] ; and (iii) The minimum and maximum

oordinate along each dimension for all the points in a segment,

hich captures the axis-aligned bounding box of the segment rel-

tive to its source shape ( B ). 

.1.1. Similarity measure between segments 

We compute the similarity (more precisely, a distance) between

ny two segments using the set of descriptors. Given two segments

 and j , we define their distance D as: 

D (i, j) = 

√ 

D p (i, j) + D s (i, j) , where: 

 p (i, j) = 

4 ∑ 

d=1 

EMD 

2 (h 

d 
i , h 

d 
j ) , and 

D s (i, j) = ‖ G i − G j ‖ 

2 + ‖ P i − P j ‖ 

2 + ‖ B i − B j ‖ 

2 , (1) 

here D p ( i , j ) denotes the distance measure for the point-level de-

criptors, h d 
i 

denotes the histogram for the segment i and point-

evel descriptor d , and EMD is the Earth-Mover’s Distance, which

llows to measure the similarity between two probability distri-

utions given in the form of histograms [40] . Similarly, D s ( i , j ) is

he distance for the segment-level descriptors, denoted according

o the acronyms defined above. 

Our similarity metric allows us to find segments that are simi-

ar in their overall geometry, while preventing fine detail from in-

uencing the similarity too much, which enables us to synthesize

hapes with variations in their details. 

.2. Adjacency graphs of the shapes 

For each shape S in our input set, we create a graph G S that al-

ows us to capture the neighborhood information of each segment

n S . We also use this information during the synthesis. The graph

as a node for each segment of the shape, and an edge between

ach pair of segments that are neighbors in the shape. To deter-

ine if a pair of segments i and j of S are neighbors, we adapt the

ethod employed by Jaiswal et al. [19] . Specifically, we say that

he segments i and j are neighbors if we can find a pair of points

 ∈ i and q ∈ j such that: || p − q || ≤ 0 . 035 
3 
√ 

V , where V is the vol-

me of the bounding box of S . Fig. 3 presents an example of the

djacency graph of one of the shapes of our input set of chairs. 
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5.3. Shape synthesis via sampling 

Template selection . To obtain synthesized objects with a plausi-

ble structure, we select one shape from our input set as a tem-

plate. This template T guides the synthesis process, determining

the global structure and topology of the generated shape. Note

that, as part of the procedure explained in Section 5.2 , we have

also computed the adjacency graph for the template T , which we

will denote as G T . 
For synthesizing a new 3D shape, we select a specific subset of

segments from the set � to compose the shape, according to the

similarity metric and the selected template. 

5.3.1. Shape energy 

To synthesize a 3D shape with variations in its local geometry

while maintaining a plausible structure, we sample segments from

our pool of parts � that can replace each segment i of the tem-

plate T while forming an adequate shape. We formulate this goal

as the maximization of a shape energy of the form: 

E(m ) = 

∑ 

i ∈ T 
E(i, m ) , with: (2)

E(i, m ) = P i (m (i )) + P PW 

i (m ) , (3)

where T is the set of segments that form the template T , m is

a mapping that encodes the assignment of segments in � to the

segments of T , and the two terms of Eq. (3) , P i and P PW 

i 
are defined

below. 

The energy defined in Eq. (2) estimates whether the segments

selected to compose a new shape contribute to create a plausible

object. The estimation involves the two terms of Eq. (3) . The first

term, P i , is a unary energy that measures the overall similarity

between segments i of the template and their replacements m ( i ).

The second term of Eq. (3) is a pairwise energy that measures the

similarity between the context of each segment in the synthesized

shape compared to the context of the original segment. 

5.3.2. Sampling of segments for shape synthesis 

To synthesize a plausible shape, we construct the mapping m so

that the energy E ( m ) given by Eq. (3) is maximized. Since directly

optimizing Eq. (3) is only possible for certain convex energies [41] ,

we employ a heuristic sampling approach instead. To perform the

sampling of the segments that will compose a shape, we transform

the distances between the segment i ∈ T and all the segments in

the set � into a discretized Probability Density Function (PDF) by

means of the following expression: 

P i (r) = 

exp (−D (i, r)) ∑ 

j∈ � exp (−D (i, j)) 
, (4)

where P i ( r ) is the probability of segment r ∈ � being a suitable re-

placement for the segment i ∈ T , according to the similarity given

by Eq. (1) . In our heuristic algorithm, we randomly sample a seg-

ment with a probability higher than a threshold τ , to obtain a

segment with high similarity in comparison to the segment i ∈ T .

Specifically, for the experiments that we performed for this pa-

per, we sampled segments with a probability higher than τ = 0 . 75 .

In addition, we also consider the following filtering conditions to

compute the final mapping m : 

• We compute the ratios between the length of each pair of sides

of the bounding box of each segment, and we find the differ-

ence between the maximum of these ratios for every pair of

segments in the set �. Then, we discard as possible replace-

ment for the segment i ∈ T any segment for which such differ-

ence is larger than a threshold η = 1 . 8 , which was determined

experimentally. 
• Additionally, we filter out segments based on an adjacency

score defined for a segment i ∈ T as: 

H i = 

∑ 

j∈ N i 
D (i, j) , (5)

where D is the distance defined in Eq. (1) , and N i is the set

of segments that are neighbors of i ∈ T . We normalize the score

H i by the mean and standard deviation of the entire shape T ,
yielding a normalized score ˆ H i . Similarly, we compute the score
ˆ H r for the segment r sampled from the PDF, and we calculate

the difference ˆ h between the score of i ∈ T and the score of r ,

i.e.: ˆ h = | ̂  H i − ˆ H r | . We then filter out segments where ˆ h is larger

than a threshold. In practice, we use a threshold of 2, which

allows us to discard segments with very dissimilar contexts. 

In general, we also filter out segments coming from the tem-

late shape, to obtain synthesized shapes with more variety in

heir fine details in comparison to the original template. Nonethe-

ess, our method can also preserve selected segments of the tem-

late during synthesis, as we show in Section 6.4 . 

Furthermore, to obtain a shape that preserves the main sym-

etry relations of the template, we use the list of symmetric pairs

reated during the segmentation, which determines if a segment

 ∈ T has a symmetric segment j ∈ T . For such symmetric pairs, we

ompare the probability computed by Eq. (3) for each correspond-

ng replacement segment r = m (i ) and s = m ( j) , and we keep in

ur synthesized shape the segment having the highest probabil-

ty. During our shape post-processing step, we reflect this segment

hrough the corresponding symmetry plane of the shape [35] . 

Next, we employ the probability associated with the segment r

ampled from the unary PDF as the value of the first term of the

nergy function of Eq. (3) . To compute the second term of Eq. (3) ,

e compute a pairwise PDF given by: 

 

PW 

i (m ) = exp 

( 

−
∑ 

j∈ N i 
| D (i, j) − D (m (i ) , m ( j) | 

) 

, (6)

here, as before, D is the distance defined in Eq. (1) , and N i is the

et of segments that are adjacent to i according to the adjacency

raph of the template. After normalizing Eq. (6) by the total num-

er of segments of �, we compute the cumulative sum for the val-

es of this pairwise distribution, and we use this cumulative sum

o extract the probability that represents the value of the second

erm of Eq. (3) . 

By sampling different segments from the unary PDF computed

or each segment i , we can generate several new shapes from the

ame template, as we will see in Section 6.2 . Finally, after sam-

ling each segment that will compose a new shape, we compute

he shape energy according to Eq. (2) . 

.4. Shape post-processing 

Given the segments selected to synthesize a new shape, we fi-

alize the creation of a 3D object with a two-stage procedure that

e describe next. 

.4.1. Segment placement for point cloud synthesis 

To generate a point cloud from the mapping m , we compute, for

ach replacement segment, a transformation composed of a rota-

ion, a non-uniform scaling, and a translation, that allow us to find

he optimal placement of the segment in the synthesized shape,

ith respect to the corresponding size, scale and orientation of the

riginal segment of the template. 

First, given a replacement segment r , we compute a rotation so

hat the orientation of r matches the orientation of the segment i

f T . To obtain this rotation, we extract the oriented bounding box
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Fig. 5. Synthesized point cloud before the alignment between adjacent compo- 

nents, showing two neighboring segments and their contact points. 
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OBB) of the segments r and i using the method of Fish et al. [23] .

o obtain the principal axis of orientation of each fine-grained seg-

ent, we initially used the principal components given by PCA, as

roposed in previous works [37] . However, we found that this ap-

roach did not provide consistent results in many cases. Thus, we

esort to the user-given annotations on the principal axis of each

egment, which are specified during the segmentation process. 

Afterwards, we compute a non-uniform scaling to make the

roportions of the bounding box of the segment r match as best

s possible the size of the bounding box of i . In addition, we ob-

ain a translation from the position of the replacement segment r

owards the position of i by calculating the difference between the

entroid of the segment i and the centroid of r . 

It is important to note that the method that defines the map-

ing m selects the same replacement r for symmetric segments of

he template. Therefore, in practice, we only compute the trans-

ormations described above for one of the symmetric segments of

he template T , and we reflect the transformed segment through

he main symmetry plane of T , generating, thus, a new shape that

espects the symmetry properties of the template. 

Moreover, due to the differences in the geometrical features be-

ween the parts of the template and the parts of the synthesized

hape, after applying the alignment described above, the synthe-

ized shape can have disconnections and misalignments between

ts adjacent segments. Thus, similarly to previous works [4,21] , we

efine the placement of the parts of the new shape by aligning a

et of contact points on the segments. 

More precisely, we obtain a set of four matching contacts for

ach segment boundary that will be aligned. Suppose first that we

ould like to align two adjacent segments r and s . To acquire the

et of contact points, we use the OBBs for the segments r and s ,

nd we find the face on the OBB of r that is closest to the points

f the segment s . We denote such face by f r . Likewise, we find the

ace on the OBB of s that is closest to the segment r , denoted f s .

hen, we compute the area of the faces f r and f s . We assign as the

rst set of contacts the corners of the face with the smallest area.

et us suppose, w.l.o.g., that f r is the face with the smallest area.

hen, we assign as the four contact points for the segment r the

orners of the face f r . To find the contact points for the other seg-

ent ( s in this case), we project the contact points of the segment

 towards the plane given by the face f s and we assign as contacts

or the segment s the four points of the segment that are closest to

ach point that was projected on the face f s . Fig. 5 shows an exam-

le of the synthesized point cloud of a chair before the alignment,

here we zoom in two adjacent segments, denoted as r and s , and

e show the contact points of each segment, illustrating each pair

f matching contact points with corresponding matching colors. 

Using the set of four pairs of contacts, we compute the align-

ent between adjacent segments in a similar manner to previous

orks [4,5,21] . The local alignment between neighbor segments is

omposed of a translation and a non-uniform scaling that optimize
he alignment between the contact points in a least-squares sense

21] . Specifically, we find an optimal translation computing the dif-

erence between the centroid of the contact points of r , and the

entroid of the contact points of its neighbor segment s . To com-

ute the scaling for the segment r , we calculate the average of the

calings required to align each contact point of r to its matching

ontact points on s . 

Furthermore, to perform the alignment for all pairs of segments

n the synthesized shape, we traverse the graph of the template G T 
y means of a breadth-first search algorithm [42] , aligning neigh-

oring segments during the traversal. This procedure allows us to

lign the segments of the shape in an incremental manner, avoid-

ng the need to realign segments that were already aligned in ear-

ier stages of the process. 

Specifically, we select one the segments of T that has the largest

umber of neighbors in the template to start the traversal of the

raph G T . Let r be the segment on the synthesized shape corre-

ponding to this initial segment of T . We align first each neighbor

f r based on their respective contact points. Next, we continue the

raversal with one of the neighbors of r , say s , and we compute the

lignment between s and each one of its respective neighbors in

he new shape, before moving to the next neighbor of r . Finally, we

tore the full set of transformations computed for each segment.

e use these transformations for mesh synthesis, as we describe

ext. 

.4.2. Mesh synthesis 

To create a shape with a well-defined surface, we directly trans-

er parts of the input 3D meshes to compose the new mesh. How-

ver, since the fine-grained segments are extracted from the sam-

led point clouds, there are many cases where the boundaries

f the segments do not match the edges of the triangles on the

eshes. Hence, to alleviate this problem, we first compute a sub-

ivision of the input meshes. 

Mesh subdivision . We compute the subdivision of each input

esh using the Loop scheme, which iteratively splits all the faces

aving edges longer than a threshold into four triangles. We em-

loy a threshold ξ = 5% of the length of the longest edge of the

nput mesh M . The result is a subdivided mesh 

ˆ M where all the

aces have a length smaller or equal than the threshold ξ . Note

hat, differently from the original Loop scheme, we do not interpo-

ate newly-created vertices to smooth the meshes, since our goal

s mainly to increase the resolution of the meshes. 

Extraction of mesh segments . Next, we extract from the subdi-

ided meshes a set of mesh segments that approximately corre-

pond to each fine-grained segment in our set �. However, the

esh segments obtained directly from the subdivided meshes can

ontain faces with edges that lie slightly outside or slightly inside

he boundaries of the bounding box of the segment, yielding mesh

egments with jagged boundaries. To correct this problem, we find

he vertices closest to the boundaries of each mesh segment that

o not match exactly with the boundary of the bounding box of

he corresponding fine-grained segment. Then, we project these

ertices towards the plane given by the corresponding closest face

f the bounding box of the segment. 

Placement of mesh segments . In this step, we first transform the

ertices of each mesh segment employing the transformation that

as stored during the process of point cloud synthesis. Next, we

ptimize the alignment between the adjacent mesh segments on

he synthesized shape by means of a local alignment analogous to

he process that we employ during the synthesis of point clouds.

ence, we find a set of vertices on each adjacent mesh segment

hat we use as contact points to compute the alignment. To find

hese contacts, we employ the same procedure that we described

or the case of the adjacent segments of a point cloud. Additionally,

e also compute the alignment of the adjacent mesh segments of
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Fig. 6. Shapes synthesized using different templates from our input set of tables. For each group of results, we show the template shape (top-left, in gray), the fine-grained 

segmentation of the template (bottom-left), the synthesized mesh (center), and the synthesized point cloud (right). 

Fig. 7. Shapes synthesized using different tem plates from our input set of chairs. For each group of results, we show the template shape (top-left, in gray), the fine-grained 

segmentation of the template (bottom-left), the synthesized mesh (center), and the synthesized point cloud (right). 
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the synthesized mesh by traversing the nodes of the graph G T in a

breadth-first manner, as we did for the generation of a new point

cloud. 

6. Experimental results 

In this section, we present the results of diverse experiments

performed to validate our synthesis method. 

Input datasets . In our work, we focus on man-made objects,

which often exhibit rich local geometrical details and multiple

symmetric parts, which can be captured well by fine-grained seg-

ments. Specifically, we applied our method on three datasets: a

family of 30 chairs, a family of 15 tables, and a hybrid set that

combines all the table models with a subset of 15 chair models.

We collected our input shapes from three different sources: the

dataset of furniture models of diverse styles of Hu et al. [31] , and

two public online repositories, ShapeNet [43] and 3D Warehouse

[44] . 

6.1. Shapes synthesized from different templates 

Fig. 6 shows a set of shapes created with our method using the

input set of tables, while Fig. 7 shows several shapes synthesized

using the set of chairs. Each shape displayed in Figs. 6 and 7 was
reated using a different input template. Note that all the synthe-

ized shapes that we present in this and the following two sections

o not contain any of the original segments of the input template. 

Following the symmetry annotations that are made for each

hape during the segmentation, our method employs the same

egment to replace each part that was identified as symmetric

n the template. Thus, all the synthesized point clouds that we

resent in this work show the same color for all the symmetric

arts. As we can see in Figs. 6 and 7 , using the same segment for

ll the symmetric parts allows us to better preserve the structure

f the template in the synthesized models. 

Moreover, the sampling process used to synthesize a shape

nds segments that have an overall geometry that is quite similar

o the geometry of the original segments of the template. Hence,

ur method can generate shapes that keep a plausible structure

hile using templates that have diverse forms and topologies. For

xample, in Fig. 6 (a), (b), and (f) and Fig. 7 (a), (b), and (c), we can

ee that the synthesized shapes maintain the general form of the

orresponding templates. We analyze in more detail the process of

ampling the segments for the synthesis process in Section 6.5 . 

.2. Shapes generated from the same template 

Fig. 8 presents three shapes synthesized from a single template

elected from the set of chairs, and the corresponding value of the
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Fig. 8. Models generated from a single template chair. Top row: segmented point 

cloud for the template and synthesized point clouds; middle row: input and syn- 

thesized meshes; bottom row: shape energy for each shape. 

Fig. 9. Shapes synthesized from a single template table. Top row: segmented point 

cloud for the template and synthesized point clouds; middle row: input and syn- 

thesized meshes; bottom row: shape energies. 
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hape energy computed using Eq. (2) for each shape. We observe

hat our approach generates three shapes that are distinct from

ach other and from the template, possessing many local variations

n their geometry. This can be seen especially in the backs of each

ynthesized chair. Additionally, all the shapes maintain the general

orm of the template, although the synthesized shape in Fig. 8 (a),

hich has the highest shape energy, presents a form that resem-

les more closely the structure of the template, in comparison to

he shapes shown in (b) and (c). As we explained in Section 5 , the

alue of the shape energy defined by Eq. (2) captures the general

imilarity of the individual segments, as well as the similarity be-

ween the contexts of each segment of the synthesized shapes in

omparison to the corresponding segments of the template. 

Furthermore, all the table models that we present in Fig. 9

resent several fine detail variations in their legs and, at the same

ime, they all preserve the general structure of the template. Cor-

espondingly, the values of the shape energy for the three synthe-

ized shapes are similar, which shows that our shape energy cap-

ures in an appropriate manner the similarities between the seg-

ents of the template and the fine-grained parts sampled for the

ynthesized shapes. Nonetheless, the form of the segments of the

hape of Fig. 9 (a) presents some differences with respect to the

riginal segments of the template and this is captured in a correct

anner by our shape energy, since the lowest energy value shown

n Fig. 9 corresponds to the shape shown in (a), which is most dis-

imilar to the template. 
.3. Shapes synthesized from a hybrid set 

Since our synthesis approach is based on the geometric proper-

ies of the segments used for synthesis and not on their semantic

abeling, our method can be employed in a straightforward manner

n a hybrid set containing shapes of different classes. In this way,

e can introduce additional variations into our synthesized shapes.

n Fig. 10 , we show various shapes generated with our method us-

ng the hybrid dataset. In each synthesized model, we highlight a

egment that was extracted from a family that is different from the

amily of the template shape. 

Our approach can combine the fine-grained segments of the

wo families of the hybrid set generating models that are plausible

ariations of the original template shape. In particular, the chairs in

ig. 10 (a) and (e) contain in their backs several segments that have

een extracted from shapes of the family of tables. Meanwhile, for

he table shown in Fig. 10 (c), only its top segments were taken

rom another input table, while all the other segments, including

he fine details on the sides of the table, come from segments ex-

racted from chair models. 

In addition, the synthesized tables that we show in Fig. 10 (b)

nd (f) employ several segments from the chairs family. For in-

tance, we can observe that the seat of a chair has been used in

 feasible manner to replace the top of the input table template

n both (b) and (f). Moreover, we see in Fig. 10 (d) a chair model

reated from a template with a complex structure, which also con-

ains various details in the legs and the back. 

.4. Shapes synthesized preserving parts of the template 

Using our method, we can also select specific segments of the

emplate shape that must be preserved in the synthesized shapes,

ielding additional variations in our results. Fig. 11 shows several

hapes that we have synthesized maintaining different parts of a

iven template. For each synthesized shape, we highlight the seg-

ents of the template that were preserved. 

As we can observe, our method can place and align in an ap-

ropriate manner the segments of the original template together

ith the segments that were sampled from other shapes, produc-

ng a cohesive and plausible shape. We can select several adjacent

egments from the template to be preserved in the novel shapes,

s we show in the example of Fig. 11 (a). Additionally, we can also

reserve in the synthesized shape smaller portions of the template,

s illustrated in Fig. 11 (b). 

.5. Analysis of the method 

Shape energy . By means of our shape energy function, which in-

orporates the similarities of each individual segment, and the sim-

larities between the segments that are adjacent in the 3D shapes,

ur method can find suitable parts to replace the segments of the

nput templates. We show in Fig. 12 the sources of some of the

egments that were used by our method to generate the shape of

ig. 7 (b). We see in this example that the segments that belong to

he legs of other shapes are the segments most commonly selected

y our approach for the legs of the generated shape, and the same

ccurs with other parts. 

In addition, Fig. 13 shows an example of the individual energy

alues computed with Eq. (3) for two segments of three shapes

enerated from a single input template. In particular, the segment

enoted as C 1 has the highest energy, and we observe that this

egment is the most similar with respect to the corresponding seg-

ents T 1 of the template, since the segment C 1 has a curved form

hat is similar to the form of segment T 1, while segments A 1 and

 1 do not exhibit such curved form. Likewise, the lower energy
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Fig. 10. Shapes synthesized with the hybrid set. For each group of results, we show the original template shape (gray) and its fine-grained segmentation. We highlight with 

a red circle a segment that was extracted from a shape (blue) that belongs to a family that is different from the template’s family. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Shapes synthesized using different input datasets, and preserving specific parts of the template shape. The preserved parts are circled in red. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Example of some of the fine-grained segments selected by our method for 

synthesizing the chair shown in the center. The mesh synthesized from this point 

cloud is shown in Fig. 7 (b). 

 

 

Fig. 13. Energy values computed for pairs of segments sampled to synthesize three 

chair models (brown) from a single template (gray). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

p  

c  

q  
values of the segments B 2 and C 2 capture the differences in geom-

etry and context between these two segments and the segment T 2

of the template. 
Timing statistics . Segmenting an input set with our interactive

rogram requires considerable time, especially for shapes with

omplex geometries. Segmenting a shape with our program re-

uires on average 1.8 h for the set of chairs, and 1.3 h for the ta-
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Fig. 14. (a) Example of a case where the alignment process produced intersections 

between segments; (b) Synthesized shape where we show limitations of the process 

of alignment between adjacent segments, and segmentation artifacts. 
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les dataset. On the other hand, for shape synthesis, on a PC with

 3.4 Ghz Intel Core i7 6700 and 16 Gb of RAM, the generation of

 new point cloud with our unoptimized Matlab implementation

equires an average time of 14.98 s for the set of tables that con-

ains 415 segments; 13.92 s for the set of chairs (1627 segments);

nd 16.21 s for our hybrid set (1229 segments). Generating a new

esh only requires a fraction of a second in all cases. However, file

/O takes considerable time for the subdivided meshes, and thus

he total time for synthesizing a mesh and writing its file is on

verage 10.20 s. 

. Conclusions, limitations, and future work 

In this paper, we presented a pipeline for 3D synthesis of man-

ade shapes based on recombining fine-grained segments ex-

racted from an input set of shapes. The results of diverse exper-

ments performed with different datasets, including a hybrid set

hat contains shapes of different classes, show that our method can

enerate 3D models that have a wide range of fine details. In ad-

ition, we showed that our method can be employed to preserve

ertain portions of the original input template, allowing us to con-

train the synthesis. 

We showed that we can generate a plausible shape preserving

he structure and topology of a template by maximizing an energy

unction that captures in an appropriate manner the overall simi-

arities between the parts of the template and the parts selected to

ynthesize the shape. Although we showed with a qualitative anal-

sis that the use of our selected descriptors and the maximization

f the shape energy lead to the synthesis of meaningful shapes,

s future work, we would like to perform a more thorough analy-

is of our shape energy and possibly a user study to evaluate our

esults in a quantitative manner. Specifically, we could ask users

o evaluate the plausibility and quality of the shapes generated by

ur method. Moreover, to the best of our knowledge, our method

s the first to synthesize shapes from more granular parts. Thus, a

omparison to existing shape synthesis approaches is difficult, as

ur objective and the type of segmentation that we use are differ-

nt in nature from those of previous methods. Nevertheless, a user

tudy would also allow us to compare our shapes with the ones

roduced by previous methods, e.g. [4,6] , in terms of quality and

lso variability. 

Additionally, our method does not require a semantic segmen-

ation, nor part correspondences between the shapes of the in-

ut dataset, unlike most previous approaches. However, we cur-

ently employ an interactive tool to obtain our fine-grained seg-

ents with consistency in size across all the shapes of our dataset.

oreover, our pre-processing stage requires considerable manual

ffort, as implied by the large average times required to segment

 shape with our interactive program. Several alternatives can be

xplored to obtain our fine-grained segments automatically. First,

e could combine the tool for regular partitioning of segments

hat is part of our interactive segmentation program with auto-

atic approaches for shape segmentation that are based only on

he geometric information of the shapes [9] , which would yield

 segmentation with meaningful boundaries and parts of consis-

ent size. Also, we could improve the consistency of the segments

y training a model to perform our fine-grained segmentation, by

eans of traditional learning methods [28] or recent deep-learning

echniques [11] . Such a method would need to learn how to par-

ition parts into consistent sizes and following natural boundaries,

ut would not need to account for all possible semantics (part la-

els) of the shapes. 

On the other hand, we observed in some of our results that the

lignment process does not prevent intersections or other types

f visual defects from happening between adjacent segments, as

hown in Fig. 14 (a). In addition, when there are significant differ-
nces in the geometry of the boundaries of adjacent segments, the

lignment process can connect only a small portion of the bound-

ries of the segments, as shown in the inset of Fig. 14 (b). To solve

his problem, instead of computing an alignment, we could deform

he boundaries of the segments so that they match to each other.

his could be achieved, for instance, with a deformation approach

ased on transformation propagation [45] , where we would allow

he parts to deform more near the boundaries. 

In some cases, conflicts could occur in the alignment process

hile traversing the adjacency graph of the template. Specifically,

 segment that should be aligned with some of its neighbors, could

ave been aligned previously with respect to another neighbor. To

void disconnecting pairs of segments that were aligned in pre-

ious stages of the process, we “freeze” the segments that have

lready been aligned, even though this could leave gaps between

ome adjacent segments in the generated shapes. However, we

ote that traversing the adjacency graph of the template shape us-

ng a breadth-first approach, and starting the traversal from one of

he segments that has the largest number of neighbors, allows us

o avoid this issue in most cases. 

Another possibility for improving the segment alignment and

onnectivity consists in obtaining a mesh from the synthesized

oint cloud with a surface reconstruction approach, instead of ex-

racting the mesh segments from the original input shapes. In par-

icular, we could employ methods like Poisson surface reconstruc-

ion [46] , where we could constrain the reconstruction to preserve

he internal parts of the segments while smoothing the boundary

egions, avoiding the loss of the fine details that we seek to main-

ain in our shapes. This would prevent some segmentation artifacts

n our synthesized meshes, which can appear in some of our re-

ults as small black patches, as shown in one of the segments of

he legs of the shape in Fig. 14 (b). 

Finally, another interesting direction for future work could in-

olve the use of different options to constrain the synthesis pro-

ess. For instance, by using not just one input template, but by

ombining parts coming from different templates, we could intro-

uce additional variability, such as topological changes, to our syn-

hesized shapes. 
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