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a b s t r a c t

We present a method to generate models for trees in which we first create a weighted graph, organized

based on the Yao graph, then place endpoints and root point and plan least-cost paths from endpoints

to the root point. The collection of resulting paths forms a branching structure. We create a hierarchical

tree structure by placing subgraphs around each endpoint and beginning again through some number

of iterations. Powerful control over the global shape of the resulting tree is exerted by the shape of the

initial graph, composed of simple geometric primitives arranged in part manually and in part

procedurally. Users can create desired variations by adjusting the initial graph shape; more subtle

variations can be accomplished by modifying parameters of the graph and subgraph creation processes

and by changing the endpoint distribution mechanisms. The method is capable of matching a desired

target structure with a little manual effort, and can easily generate a large group of slightly different

models under the same parameter settings. Environmental effects can also be incorporated into the

models by automatic parameter adjustment. The final trees are both intricate and convincingly realistic

in appearance.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Trees are commonplace in the natural world, and tree models
often appear in the virtual worlds of computer games and films.
Fig. 1 shows some tree structures. In the top image, we see some
typical characteristics of trees: irregular individual branches
and multiple levels of detail. A typical global tree shape, seen in
the lower image, includes a single trunk, some main branches, and
smaller branches that form the tree crown in a hierarchical structure.
The overall tree shape possesses a complex beauty, which unfortu-
nately is tedious to create with human labor. To ease the burden on
digital artists, procedural modeling methods have been devised, able
to create many types of models but especially useful for complicated
subjects such as trees.

This paper presents a procedural method to model trees, based
on finding least-cost paths through a weighted graph, a modeling
idea previously introduced by Xu and Mould [1–3]. The essential
idea is to create a graph with random edge weights, then plan
least-cost paths from a single root node to destination nodes. The
resulting paths form a tree. By varying the graph shape and edge
weights, the method can create a wide range of tree models.

An earlier version of this paper [3] described a modeling method
involving sequences of graphs, using path planning to link endpoints
ll rights reserved.
in all graphs with a single root node. In this extended version, we
build our initial graph using the Yao graph to reduce the number
of edges without compromising quality; we propose refining the
shapes of graphs to get more natural details in the resulting tree
structures; and we suggest an approach to incorporate environ-
mental factors into our tree growth process. Our method can create
realistic, highly intricate tree models, with quite direct user control
over the final tree shape through specifying the shapes of the graphs
in which the tree is built.

The paper is organized as follows. Following the introduction,
we review some previous work in tree modeling. In Section 3, we
describe the algorithm. Results and evaluation are given in Section 4.
Finally, we conclude and discuss future work.
2. Previous work

Tree modeling has a long history in computer graphics. The
most notable modeling approach is the parallel rewriting gram-
mar called L-systems, used for plant forms and even entire eco-
systems [4–6]. General control over grammar-based methods is
offered by Talton et al. [7], although their sampling process can be
very time-consuming. The space colonization method of Runions
et al. [8] offers a biologically motivated alternative with control
over global shape, exploited by Palubicki et al. [9] for self-organizing
tree modeling; here, the tree growth process follows the competi-
tion of branches for resources (e.g., light and space) with internal
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Fig. 1. Examples of tree structures.

Fig. 2. A regular and an irregular graph.
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signaling mechanisms based on L-systems. The resulting forms can
be controlled interactively, e.g., by sketching [10].

Geometric methods (e.g., that of Weber et al. [11]) explicitly vary
geometric quantities such as segment length and angles; generating
models involve adjusting a huge number of parameters. An alter-
native is to use input images to drive tree creation [12–14]: such
methods can attain extremely high quality, although the need to
supply input images is a drawback.

The basic idea of path planning [15] for tree modeling is due to
Xu and Mould [1,2], who exploited path planning for general
modeling of dendritic natural phenomena including trees, coral,
and lightning. In their work, the graph containing the paths is a
2D lattice or 3D grid. The regular lattice imposes substantial
penalties: the resolution of the model is limited by the spacing of
the graph, and hence small-scale features (e.g., tiny twigs) need a
high-resolution graph, incurring immense memory cost.

To enhance the control in tree modeling, sketch-based meth-
ods are used to provide clues of crown shape or main branches
[16–19]. Based on L-systems, Ijiri et al.’s system [16] controls the
growth direction of a tree by user-drawn strokes. However, to
model a complex tree would require a lot of user interaction.
Okabe et al. [17] build tree models using freehand sketches with
the assumption that branches are spreading to maximize the
distance between each other. In Chen et al.’s method [18], Markov
random fields are used to infer the branch shape from the drawn
sketches. Both methods use examples from a library of tree
templates for branch propagation, which reduces the burden on
user sketching. With similar stochastic optimization, Wither et al.
[19] use a priori botanical knowledge to infer branch shapes from
user sketched crown silhouettes at different scales, and can
generate realistic tree models with good overall control.

Compared to the above methods, scanning methods focus on
creating models of real trees, using point clouds of tree data
obtained by 3D scanning. Xu et al. [20] build a tree skeleton by
connecting neighborhood points to form a graph, where a single-
source shortest path algorithm is applied to reconstruct branches.
Bucksch et al. [21] extract a tree skeleton by subdividing the point
cloud. Livny et al. [22] apply global optimizations to reconstruct
multiple overlapping trees simultaneously. Scanning methods can
achieve high quality of tree models, but are not intended to model
novel trees.
3. Algorithm

We build on the method of Xu and Mould [1], who created least-
cost paths through a regular lattice connecting multiple endpoints to
a common root in order to build general tree-like structures. Since
they used a regular lattice, they little investigated the task of building
graphs; a significant portion of this paper is devoted to defining the
graph shapes, which have an enormous impact on the shape of the
final tree. The earlier work also did not pay much attention to the
details of endpoint placement. We propose an iterative method
whereby successive stages of endpoints are distributed within
subgraphs, resulting in a high degree of visible structure; we discuss
the details of the method next, to be followed by examples of our
synthetic tree images.

3.1. Basic algorithm

We construct a graph and find the shortest paths from multi-
ple endpoints to a common root point. The collection of the paths
form the tree model. The basic algorithm can be decomposed into
the following steps.
1.
 Build a graph and set edge weights randomly.

2.
 Choose a node to be the root point and some nodes as endpoints

of the structure.

3.
 Find least-cost paths from the endpoints to the root.

4.
 Create geometry around the path segments and render the

resulting model.

Xu and Mould used a graph consisting of a regular lattice, but the
resulting paths suffered from lattice artifacts. We propose instead an
irregular graph, obtained by creating a Poisson disc distribution of
nodes within a designated volume; nodes are connected by edges by
a policy, described below, and a random weight is assigned to each
edge. Fig. 2 contrasts regular and irregular graphs: use of an irregular
graph avoids lattice artifacts without necessitating higher resolution.

One option for the edge connection policy is simply to link two
nodes whenever their distance is below some threshold. This
policy is generally effective and was used for some examples in
this paper. However, choosing the threshold is problematic: too
large, and the number of edges per node is excessive; too small,
and the graph can become disconnected. An alternative which



Fig. 3. Yao graph with six sections.

Fig. 4. Pseudocode for tree construction.
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addresses this issue is to use the Yao graph [23], rediscovered as
the Orthant Neighborhood Graph [24]. Edges in the Yao graph are
determined by dividing the space surrounding a given node into
sections with rays (in 2D) or planes (in 3D): an edge is added
between the node and its nearest neighbor in each sector. Fig. 3
illustrates a Yao graph in 2D. Edges (solid lines) are connected as
described above. The Yao graph automatically limits the number
of edges while ensuring edges in every direction. Notice that there
may be more than one edge per sector for a given node: in the
example, each node originates at most six edges, but may receive
additional edges originating from other nodes.

So far, we have described the process for tree generation using
a single graph, thus producing non-hierarchical structures, some-
what resembling trees but overly simple. In the next section, we
describe how we create a succession of graphs attached to the
first, whereby we can create more elaborate and convincing trees.

3.2. Iterated structure building

A tree has a recursive structure where large branches grow
from the main trunk and smaller twigs develop from branches.
Our algorithm creates the hierarchy explicitly, iteratively extend-
ing the original graph by adding subgraphs at the tips of earlier
branches.

The overall process operates as follows. A base graph shape is
defined by a composition of geometric primitives, with the graph
itself constructed by distributing nodes throughout the volume and
connecting nearby nodes with edges. Endpoints are then placed and
a preliminary tree model is created by connecting the endpoints
with the root using least-cost paths. Subsequently, for level i41, we
create a subgraph around each endpoint from level i�1, again
defining a volume and distributing nodes and endpoints within it.
(Details of the subgraph creation are given in Section 3.3.2.) The
endpoints are connected to the structure obtained in level i�1,
producing a new structure. The process repeats for some number of
levels, say 4; depending on the desired complexity of the final
structure, the number could be higher.

Pseudocode describing the building process is given in Fig. 4.
While above we described the process in an iterative fashion, and
our implementation is iterative as well, we found it more convenient
to present pseudocode for a recursive implementation, echoing the
visual recursion of the final structure of the tree.

The preceding gives the process to construct the schematic of the
model; we then interpret the paths as geometry, placing a cylinder
(truncated cone) around each edge in the structure. The radii of the
cylinders are computed as follows. Working backwards from each
endpoint of the final level, we compute the sum of segment lengths
to a given node; call this distance s. We then compute a thickness w

for the node using a tapering parameter z and the distance: w¼ sz.
Larger values of z make the branches taper more quickly. A typical
choice for z is 0.3.

A given node may lie on many paths. For a given path computa-
tion, if the thickness it proposes for an edge is larger than the
thickness currently stored for this edge, replace the stored value with
the larger one. In practice, we often found it worthwhile to trace



Fig. 5. Illustration of the iterative tree building process.

Fig. 6. A fractal dendrite in 3D.

Fig. 7. A synthetic tree created with four iterations.

L. Xu, D. Mould / Computers & Graphics 36 (2012) 1036–1047 1039
endpoints from every level, not only those of the final level, and to
use different z for different levels; this allows us to create a thicker
trunk, if desired. The four-level tree in Fig. 7 used z¼ f0:6, 0:5,0:4,
0:3g.

Once thicknesses are known, we can place the truncated cone
about the edges, using the thickness values stored in the nodes to
provide the cone’s radius at its ends. We also add a sphere to each
node to conceal the join. We can render the structure in a
schematic fashion by directly drawing the cones as black regions
on a white background (used in numerous visualizations through-
out the paper); we can also render the geometry photorealisti-
cally, and employed POV-Ray [25] for that purpose in this paper.

Fig. 5 illustrates the method. The initial graph is a composition
of a hemisphere and a cylinder. Endpoints are randomly posi-
tioned in the hemisphere, and paths are planned from the root to
the endpoints. Then, a subgraph is created for each endpoint, as
illustrated in the third image. The rightmost figure shows the
structure once the second level has been completed.

To capture the heterogeneous structure of real trees, we use
the concept of lifespan. Each endpoint is assigned a lifespan value
L; endpoints in a subgraph will have a lifespan strictly smaller
than the parent endpoint’s lifespan, usually by taking Liþ1 ¼ Li�1.
No subgraph is created if an endpoint’s lifespan reaches zero.
The subgraph shape and size can depend on the lifespan of the
subgraph root.

We used our method to generate the structures shown in
Figs. 6 and 7. Fig. 6 shows an elaborate branching structure
obtained by starting with six endpoints in a sphere and continu-
ing for four levels. The resulting form is somewhat abstract, but
its intricacy is compelling. By imposing more structure on the
initial level, we can create structures more closely resembling
trees, shown in Fig. 7; here, the initial shape is a mushroom-
shaped cylinder plus hemisphere, reflected in the overall shape of
the final tree. The top view reveals the desired horizontal anisotropy
of the tree, while the close view allows better appreciation of the
detailed small-scale structure.
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3.3. Variations from parameters

The three main mechanisms to modify the shapes of the
synthetic trees are initial graph shape, subgraph shape, and lifespan.
The initial graph shape has a profound effect on the overall shape of
the tree. Logic governing subgraph shape controls how the tree
develops at levels beyond the first, and affects the general appear-
ance of the tree in a more subtle way. Finally, lifespan can introduce
additional variety by altering individual branch development.
We discuss each of these in more detail below.
Fig. 9. A tree with a tilted trunk. Top: initial graph; lower left: inspirational photo-

graph; lower right: our model.

Fig. 10. Two structures with different shells to place endpoints. Left: a thicker

shell can generate more branch variations in length; right: a thin shell provides

more uniform looking branches.
3.3.1. Graph shape

The graph shape in the first level controls the overall shape of
the resulting model. We describe two methods to obtain graph
shape: combination of geometric primitives and user sketching. In
the former, primitives such as cylinders, spheres, and ellipsoids
are arranged into an approximation of the desired shape. In the
latter case, we use a user sketch to infer a volume in which we
distribute nodes. Many sketch-based modeling possibilities exist,
which we have little explored in the present work; we demon-
strate the feasibility by showing trees derived from the volume
enclosed by the surface of revolution of a user-sketched stroke.

Fig. 8 shows three different trees along with their correspond-
ing graph shapes. The final model does not strictly match the
original graph shape, owing to the structures added in levels
beyond the first, but the correspondence is clear. More specific
results are also possible: Fig. 9 shows an example of modeling an
irregular tree, imitating a photograph. The graph was composed
and endpoints selected manually to match the desired outcome.

Using simple geometric primitives to build the graph in the
first level can generate a uniform-looking tree structure. The
overall tree silhouette follows the primitive shape. However, in
general, natural trees have more irregular silhouettes (e.g. clus-
ters of branches diverse in length, separated by gaps). We can
control the level of irregularity by restricting endpoint placement
to a shell near the surface of the volume, as described next.
However, for a better balance between organization and chaos in
the tree model, we propose refining the graph in the first level,
described below.

We can control diversity in branch length by restricting end-
points to lie in a shell of thickness de near the surface of the graph.
A greater value of de, yielding a large interval, produces branches
with greater diversity of length; smaller de, and a small interval,
forces endpoints into a thin shell so that the resulting paths have
little diversity of length. Fig. 10 illustrates how de affects branch
length variability. The graph is a composition of a hemisphere and
Fig. 8. Structures obtained using different shapes of graph.

Fig. 11. Two structures with different values of de.
a cylinder. Endpoints are placed in the shell between the outer and
inner hemispheres. The thickness of the shell is indicated by the
arrow. The resulting tree skeleton has not only long branches but
also short branches. In the right tree, endpoints are placed close to
the surface of the hemisphere; almost all branches have the same
length. Fig. 11 shows the tree models after four growth levels. The
left tree obtained with greater de has more diversity of branches and
irregularity of silhouette, while the right one has a more homo-
geneous appearance.

For yet higher degrees of irregularity in the tree shape, we can
refine the first-level graph, populating the large-scale structure
with smaller elements. We chose to use spheres in the examples



Fig. 14. Structures obtained by user sketches. Above: user sketched curves with

rotation axes (dashed lines); below: resulting structures.
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for this paper, although other shapes could be substituted instead.
We fill the coarse geometry with a Poisson disc distribution of
points, where the disc spacing is quite large, allowing (say) only
4–10 points to be placed. For each such point, we place a sphere; we
also place a conical volume connecting the sphere to the trunk or
tree root. The union of all such volumes is filled with graph nodes,
forming the first level in the iterated graph building. Subsequent
levels are added as before. The process is visualized in Fig. 12.

The purpose of adding a conical volume attaching the sphere to
the trunk is to ensure that endpoints within each sphere will have a
path to the root. Further, it allows us to enforce a constraint on edge
placement: no edges link nodes within different subvolumes at the
first level. This constraint ensures that the individual subvolumes
will remain distinct: their structure will not be blurred by shared
edges. Also, when we place endpoints in the first level, we can
allocate a fixed number to each subvolume, ensuring balanced
coverage of the global graph shape.

Fig. 13 compares trees from the single-volume process to the
subvolume process. Enforcing distinct subvolumes has provided
noticeably more irregularity in the global shape, with greater
Fig. 12. The process to refine the basic gr

Fig. 13. Top row: basic volume to build graph; middle row: tree models obtained w

a refinement of graph volumes.
complexity of branch distribution and higher diversity of silhou-
ette; further, the branches are visibly organized into clusters,
which enhances the natural appearance of the trees.
aph volume with spheres and cones.

ithout a refinement of graph volumes; lower row: tree models obtained with
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Sketch-based modeling provides more flexible and direct user
control than assembling geometric primitives. Here, we provide a
glimpse of how sketching can be used with our method, allowing
users to indicate a volume of revolution. A user draws a curve with
reference to an axis, and the sketched curve will be rotated around
the axis to achieve a 3D volume of revolution. Then the graph nodes
are placed in the enclosed volume and connected with edges. Fig. 14
Fig. 15. Left: tree with a¼0.7; right: tree with a¼1.

Fig. 16. Curving branches from progressively rotating subgraphs.

Fig. 17. Irregular bush and tree obtained by use of lifespan.

Fig. 18. Effect of light on the number of endpoints. Left: a tree with
shows some examples of results obtained from sketching interac-
tions. We can see the ease with which more complex volumes can be
defined; as before, the shape of the initial graph is the most
significant contributor to the global shape of the final tree model.

3.3.2. Subgraph creation

We require users to specify the graph shape for the first level,
providing control over the tree’s large-scale appearance. While
subgraph shapes for subsequent levels can in principle also be
user-defined, in practice it is tedious to do so, so we compute the
subgraph volumes procedurally, as follows.

We use a cone-shaped subset of the sphere as our subgraph,
where the cone’s tip is placed at the root of the graph. First, we
compute an orientation v

!
g for the subgraph by taking the normal-

ized vector from the root of this subgraph to the root of the previous
subgraph. The volume is defined as all points whose vector from the
root lie within an angle a of the vector v

!
g . The volume is populated

with nodes in the same way as the initial graph, and the subgraph is
formed by linking nodes closer together than a minimum distance d.

The size of the subgraph sphere decreases as we progress to
higher levels: the parameter a, where usually ao1, is the ratio
between the sizes of spheres at two successive iterations. Fig. 15
shows two trees obtained with different a. The left tree, with
a¼0.7, demonstrates a clear hierarchical relationship in branch
lengths. The branch segments closer to the trunk are long and
those near the tips are short. The tree in the right has a constant
subgraph size (with a¼1) at each level.

To produce paths with long-term curvature (similar to willow
branches, for example), we proceed segment by segment. We

have previously described the subgraph orientation v
!

g , obtained

by finding the vector from the subgraph root to the preceding

root; now, we apply a consistent transformation to v
!

g at each

level. When the transformation is a rotation about the horizontal,
the overall branch curves upward or downward. Fig. 16 shows an
example of structures obtained by the above method, with four
iterations applied.

Note that this particular procedural approach to subgraph shape is
not the only possibility, although it is a convenient option that we
rely heavily on in this paper. Other possibilities include the following:
different subgraph shapes, e.g., inverted cones; different mechanisms
for computing the orientation, e.g., using random directions or a fixed
out light influence; right: trees affected by the light direction.

Fig. 19. Effect of light on the lifespan of branches.
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vertical orientation; or adjusting the direction, shape, or size of the
subgraph based on environmental information. We will show exam-
ples of some of the possibilities in Section 4.

3.3.3. Lifespan

Previously we had lifespan dropping at a constant rate, i.e.,
Liþ1 ¼ Li�1. However, this produces very uniform trees, where all
branches are approximately the same length. If we allow the lifespan
parameter to vary more widely, we can produce more irregular trees.
One possibility is to use a distribution of possible decrements: for
example, we can assign a 30% probability of terminating a branch and
a 70% chance of instead decrementing its lifespan by a random
number in the range ð0,LÞ, where L is its current lifespan.

Fig. 17 shows some examples obtained by using the above dis-
tribution for lifespan decrement. The resulting trees have a strik-
ing irregularity and seem more lively and natural than the trees
Fig. 20. Left: our tree model
generated with fixed lifespan decrement. However, the approach
does not reliably generate models of this caliber. Further investiga-
tion of lifespan is a direction of future work.

3.4. Environmental effects

Environmental factors, such as temperature, daylight, and
moisture, play important roles during the process of tree growth.
Temperature governs the growth rate; light variations in inten-
sity, quality, and duration affect the growth process; water is
crucial [26]. Other factors such as wind direction and space
restrictions (e.g., obstacles) may also influence tree growth. Each
factor functions separately, while their composition decides the
final tree structure. Although the compound influence of various
environmental factors is a complicated problem [27], the impact
from individual environmental factors is clear. Shading forces a
; right: real photograph.
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tree to grow towards whatever light is available [28]. Branches
with good access to sunlight are always denser and grow faster
than those in darkness. Persistent strong winds can hinder branch
growth. Faced by space restrictions, such as a wall close to the
plant, plants respond by growing towards the direction with less
restriction.

We can incorporate environmental factors into our algorithm by
controlling specific parameters including number of endpoints, life-
span, and orientation v

!
g of the subgraph. We concentrate on the

effect of light, but similar modifications could be done to account for
other environmental factors, if desired. We want branches aligned
with the light direction to have greater lifespan and to sprout more
sub-branches. Suppose we have n branches at a given level. Then, we
obtain n lifespan decrements and n sub-branch counts as random
numbers from a distribution (say, a uniform distribution over some
range). We compute the angle between the light direction and the
subgraph orientation; to the branch with the smallest angle, we
assign the smallest lifespan decrement and the largest sub-branch
count, and continue for each branch in increasing order of angle.
Thus, the branches aimed away from the light will have the lowest
lifespan (greatest decrease in lifespan) and the fewest sub-branches.

The results are illustrated in two figures. Fig. 18 shows the
effect of modifying endpoint count according to light direction.
On the left, we show a tree without light influence, where the
crown developed uniformly in all directions. On the right, the
number of branches varies with the direction of light; branches
are denser towards the sun and sparser when further from the
light direction. Fig. 19 shows the effect of modifying lifespan
according to light direction. Branches close to the light direction
survive longest, while those further from the light direction more
quickly cease growing.
4. Results and evaluation

The elements of our tree modeling algorithm, including edge
weights, graph shape, and node placement, provide a wide range of
results. This section shows a cross-section of results and provides
comparisons to real photographs and previous methods. In Fig. 20,
synthetic tree images are compared with photographs. Our trees
have similar structures to the photographed trees: similar tree
crown shapes, a few thick main branches, and a large volume filled
with twigs yet with natural-seeming irregularities and gaps. Overall,
it is difficult to distinguish between the real and synthetic trees from
these images, and we judge that our method is quite effective.

Due to the involvement of random elements – particularly
random edge weights and random endpoint placement – we can
generate similar but distinct trees by keeping parameter settings
fixed. Fig. 21 shows three variations on a base tree type. In each
case, the initial graph is composed of a cylinder and a hemisphere,
but each tree has a slightly different structure while keeping
large-scale characteristics in common, such as the crown size and
the branch density.

Our use of the Yao graph allows us to produce good quality
trees despite limited edge count, saving on memory. Our previous
Fig. 21. Three trees of the same type.
approach was to link nodes whenever their separation fell below
a threshold; this technique was problematic because the outcome
depended on the threshold. A small threshold risks creating
a graph with gaps or even entirely disconnected subgraphs. While
a larger threshold avoids these specific problems, it incurs
memory costs due to large numbers of edges per node.

Fig. 22 illustrates the tradeoff with three sets of trees; all have
the same number of endpoints (1500) and use the same node count
(33,000) in the underlying graph. The trees in the top row of the
figure use the Yao graph; each node averages approximately six
edges. The middle row uses a distance threshold approach to assign
edges, with a threshold manually tuned to give good results while
minimizing edge count; while the final trees are quite good, the
graphs contain nearly double the edges of the Yao graphs. The
bottom row shows the outcome of a low threshold, here selected to
produce a graph with the same edge count as the Yao graph. The
trees are somewhat distorted, and worse, the underlying graphs
have become badly disconnected, in many cases lacking paths from
endpoints to the root. Conversely, the Yao graph allows us low edge
counts without compromising output quality.

By varying graph shape and available parameters, we can
create a wide variety of trees; examples are shown in Fig. 23.
We chiefly varied initial graph shape to generate these examples;
some of them also used custom graph shapes for the subgraphs.
A list of parameter settings for these trees can be found at the end
of this paper.
Fig. 22. Top row: trees obtained in Yao graph; middle row: trees obtained by edge

connection with a proper distance threshold in graph; lower row: trees obtained

by edge connection with a small distance threshold in graph.



Fig. 23. Different types of trees.

Fig. 24. Two trees with different root systems.

Fig. 25. Left: a model created by Xu and Mould; right: our tree model.

Fig. 26. Left: a model from Neubert et al.; right: our tree model.

L. Xu, D. Mould / Computers & Graphics 36 (2012) 1036–1047 1045
In addition to the wide variety of trees shown, our algorithm
can be used to model the root system. Fig. 24 shows two trees
with different shapes of root systems; the roots were created in a
graph bounded by a hemisphere. The taproot is a path from one
single endpoint to the root point. The lateral roots of both trees
are obtained by placing endpoints randomly around the taproots.
This is the same method used to create the structure shown in
Fig. 6.



Fig. 27. Left: a self-organizing tree model; right: our tree model.

Table 1
Timing and construction data for selected models.

Tree Number of graph nodes Number of endpoints Timing (s)

Fig. 20 (top left) 351,810 34,740 32.4

Fig. 25 84,755 3732 4.5

Fig. 27 207,458 9330 20.0

Table 2
Parameters for the models in Fig. 23.

Tree Level i Graph shape b Note

a 1 Cylinder and portion of sphere with a¼ 0:3p 12

2,3 a¼ 0:3p 3

4 a¼ 0:3p 6

b 1 Cylinder and portion of sphere with a¼ 0:25p 10

2 a¼ 0:25p 5

3 a¼ 0:25p 10

c 1 Cylinder and portion of sphere with a¼ 0:5p 30 Rotate

2, 5 a¼ 0:25p 2

3–8 a¼ 0:25p 1

d 1 Cylinder and portion of sphere with a¼p 2

2 a¼ 0:4p 10

3, 4 a¼ 0:4p 6

e 1 Portion of sphere with a¼ 0:5p 10 v
!

g of

2, 3 a¼ 0:5p 4

4 a¼ 0:3p 6

f 1 Cylinder and cone 32 Rotate

subgra2–7 a¼ 0:25p 1

8 a¼ 0:25p 8

g 1 Tilted cylinder and hemisphere 8

2 a¼ 0:5p 6

3 a¼ 0:5p 12

h 1 Cylinder and portion of sphere with a¼ 0:7p 11

2,3 a¼ 0:45p 6

i 1 Cylinder and cone 16

2,3 Cone 8

j 1 Portion of sphere with a¼ 0:3p 42

2,3 a¼ 0:3p 3

4 a¼ 0:3p 4

k 1 Cone 40 Rotate

subgra2–4 a¼ 0:25p 1

5 a¼ 0:25p 3

l 1 Cone 16 Rotate

2 a¼ 0:25p 1

3 Cone 10

m 1 Cylinder and sphere 50

2,3 a¼ 0:4p 4

n 1 Ellipsoid 35

2–4 a¼ 0:4p 4

o 1 Cylinder and portion of sphere with a¼ 0:4p 10

2,3 a¼ 0:25p 1

4 Ellipsoid 12
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Compared to existing tree modeling methods, our method has
its strengths. One key element we provide is the ability to model
structures with irregular branches. In the case of geometric based
methods, the more irregular the object is, the more parameters
are needed. However, in our method, the irregular paths are the
byproduct of path planning through a randomly weighted graph.
Without extra effort, our method generates irregular yet globally
controllable structures.

Specific comparisons to previous methods are shown in
Figs. 25–27. Based on these comparisons, our method is compe-
titive. To our knowledge, robust metrics for tree quality do not
exist, so we discuss the visual comparison in a general way below.

Fig. 25 shows our tree model compared with a tree model
generated by Xu and Mould [2]. Compared to their model, our
result is much more detailed, with many more branches and with
branches of different sizes. The use of iterated graphs allowed us
to create small features without an explosion in overall memory
usage. Fig. 26 compares our tree model to an example by Neubert
et al. [13] created using a particle tracing method. Both have
realistic visual effect. However, in general, particle tracing meth-
ods have difficulty enforcing large-scale coordinated movement
of the particles so that the desired shape is formed; in this case,
Timing (s)

6.4

7.0

v
!

g of level 2–8 downwards with 0:12p 13.4

5.6

level 2 are oriented in the negative vertical direction 7.5

v
!

g in levels 2–7 downwards with 0:03p. At final level, build

phs around endpoints from all previous levels

3.0

2.1

0.7

3.2

9.6

v
!

g of levels 2–4 upwards with 0:05p. At final level, build

phs around endpoints from all previous levels

3.3

v
!

g of level 2 upwards with 0:03p 1.3

6.8

6.7

4.8
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and that of Tan et al. [14], extra information in the form of input
images provides the needed large-scale coordination. Our method
does not require real photos and hence allows the user to skip that
step, potentially providing more control over the output tree shape.
Fig. 27 shows our tree model and a tree model by the self-organizing
method of Palubicki et al. [9]. Our result has a similar global shape
and branching structure as their model. However, we characterize it
as less regular: its branches are more crooked and in the projection
to 2D the gaps are more unevenly distributed. Whether this is an
advantage or not depends on the application; users might some-
times prefer the irregularity in pursuit of certain effects (for
example, in creating a haunted forest).

Our method has some limitations as well. While we are free
from lattice artifacts and hence can create convincing tree models
with lower graph resolution, the feature resolution is still tied to
the node spacing and hence the approach is fairly memory-
intensive. Detailed control over tree shape is provided by end-
point placement, but we care about the path rather than the tip
position. We have begun to explore environmental factors, and
shown the feasibility of incorporating environmental effects into
our framework, but have not yet done this in a general way.

We close this section by providing parameter and timing
information for some of our models. Timing information and
statistics for selected tree models appear in Table 1. Smaller trees
could be completed in a few seconds; our largest tree, with about
30k endpoints in graphs of over 300k nodes, required about 30 s.

In all cases, timing results are with respect to a 3.0 GHz CPU with
3.0 GB RAM. In general, the time required is linear in the total
number of nodes in all graphs combined, given a suitable spatial
subdivision scheme for proximity queries in graph construction.
The parameter information for the trees in Fig. 23 is given in Table 2.
5. Conclusions and future work

We demonstrated that procedural tree modeling based on path
planning is capable of producing elaborate and realistic trees. The
general shape is decided mainly by the initial graph shape and
partially by the shapes of subgraphs added in later stages. The
detailed features of tree structures can be created by refining the
initial graph volume. Wide variations are possible, producing many
different shapes of trees, some of which are chronicled in this paper.
Since the algorithm involves random edge weight and node and
endpoint placement, many different but similar models can be
constructed from the same parameter settings. In most applications
general shape control is considered important, so we provide large-
scale control through specifying graph shape. Optionally, the finer
structure can be guided by specifying graph shapes to use in later
iterations; we provide defaults which provide generically appealing
results.

Our main direction for future work involves increasing the
degree of user control over the output. We believe that sketching
can feasibly be combined with the current approach; users might
place endpoints or sequences of endpoints with an interactive
tool, or paint maps of greater or lesser edge weights. We have
begun to investigate sketching as a means of controlling overall
graph shape, and this would seem to be rich ground for further
exploration. Also, our model currently only treats the main
structure of the tree, and we would like to investigate phenomena
including leaves, bark, fruit, and flowers.
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