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ABSTRACT

Partition of unity parametrics (PUPs) are a recent framework de-
signed for geometric modeling. We propose employing PUPs for
procedural texture synthesis, taking advantage of the framework’s
guarantees of high continuity and local support. Using PUPs to in-
terpolate among data values distributed through the plane, the prob-
lem of texture synthesis can be approached from the perspective of
point placement and attribute assignment. We present several alter-
native mechanisms for point distribution and demonstrate how the
system is able to produce a variety of distinct classes of texture, in-
cluding analogs to cellular texture, Perlin noise, and progressively-
variant textures.

Index Terms: Computer Graphics [I.3.3]: Picture/Image
Generation—Line and curve generation

Procedural texture has been a central aspect of content cre-
ation since the earliest days of texture. Probably the single most
widely used texture synthesis tool is Perlin noise [10,11]; however,
many other techniques exist, including spot noise [14], cellular tex-
ture [17], reaction-diffusion texture [13,16], and more. Modern ap-
proaches tend to be spectral techniques, such as wavelet noise [3]
and Gabor noise [7], or nonparametric [4, 5].

At the same time, methods for point distribution are an ongo-
ing area of research and have become very sophisticated. Methods
for Poisson disk distributions abound, and recent methods such as
capacity-constrained distributions [1] and differential domain dis-
tributions [15] allow high-quality sampling of arbitrary fields.

Point distributions and texture synthesis are linked by the no-
tion of discrete element textures [6], where discrete textons are
distributed over the plane in some fashion (in the cited work, by
nonparametric synthesis based on a sample distribution). In our
case, we begin with a discrete arrangement obtained by direct pro-
cedural methods but then use an interpolation scheme to create a
continuous-tone texture.

This paper describes a proposal to employ partition of unity para-
metrics (PUPs) for texture synthesis. The PUPs framework estab-
lishes local, high-continuity interpolation, allowing texture synthe-
sis tasks to become point distribution tasks. We have direct spatial
control over texture features by manipulating point positions and
values, as in conventional geometric modeling activities. We can
also make use of known techniques for automatically distributing
points, whether in Poisson disk [8, 9] or other distributions. PUPs-
based textures are flexible and versatile, able to imitate Perlin noise,
cellular textures, and other texture types. In addition, our technique
is well-suited to nonstationary or progressive distributions, where
the size and shape of texture elements vary spatially in controlled
ways. We use the term stationary to refer to textures where the
statistical properties do not vary over the image, and nonstationary
when the properties vary with location.
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This paper is organized as follows. First, we discuss existing
work in texture synthesis and point distribution, and we give an
overview of PUPs. Next, we describe our texture synthesis algo-
rithm: given an input point set and associated values, we create the
corresponding continuous-tone texture. We next show a suite of
textures generated by variations in point distribution and attribute
assignment, demonstrating the versatility of the approach. Lastly,
we conclude with some summarizing remarks and suggestions for
possible future research directions.

1 RELATED WORK

The single most widely used texture synthesis primitive is Perlin
noise [10,11]. In Perlin noise, random orientations are set at lattice
nodes and splines used to interpolate intermediate values. The ease
of implementation, continuity, reproduceability, and ability to eval-
uate at arbitrary coordinates have been huge advantages for Perlin
noise. Our proposed method is similar, but our use of the PUPs
framework allows arbitrary interpolation functions and does not re-
quire a regular lattice; as we will see, the freedom to create an arbi-
trary graph allows progressive textures which would be difficult to
create using Perlin noise, as well as avoiding lattice artifacts.

For biologically inspired textures such as spots and stripes,
reaction-diffusion textures [13, 16] were proposed. Such textures
have extremely high quality and the methods can synthesize nonsta-
tionary patterns, but have generally been deemed slow and difficult
to control. Cellular texture [17] is an alternative for some animal
markings such as giraffe spots, but the range of possible textures
is more limited. Progressively-variant textures [19] use example-
based techniques on a texton map to create textures that change
gradually from one type to another, with intriguing results.

In recent years most research on texture synthesis has been based
on nonparametric synthesis [5], where pixels or patches are copied
in a structured way from an example texture to a destination. Such
methods have achieved high quality, but have the drawback that
the exemplar texture is needed. Another strand of recent work has
been spectrally controlled noise such as wavelet noise [3] or Gabor
noise [7]. These are texture synthesis primitives and allow a variety
of textures to be created, and the proposed work is in the same spirit.

The proposed texture synthesis process is based on partition of
unity parametrics, a recent meta-modeling framework proposed by
Runions and Samavati [12]. In the version of the PUPs framework
used here, a triangle mesh stores data at nodes; the values is in-
terpolated across triangle faces using projection and normalization.
Originally proposed for geometry, here we adapt it to texture syn-
thesis; since the PUPs structure is already well suited to texture
synthesis, we concentrate on showing how point distributions and
point labels can be assigned in such a way as to create different
types of texture. We show textures resembling Perlin noise, Worley
noise, and reaction-diffusion spots, plus demonstrate how to cre-
ate progressively-variant textures with controllable feature size and
nonstationary structures. We discuss PUPs, and our modifications
thereto, in detail in section 2.

2 ALGORITHM

PUPs uses a set of control points P ⊂ R3 to create an interpo-
lated surface, which is a weighted sum of the control points. While



in PUPs the points stored no information beyond their geometry,
points can be assigned additional attributes which are then inter-
polated: in our case, we store an orientation, used to adjust the
interpolation weight, and a value, typically a scalar intensity value
or a vector color value. Since we are creating 2D textures, our con-
trol points lie in R2; without loss of generality, we created textures
where P ∈ [−1;1]2.

At a point in space u, the texture value is a weighted sum of the
values at the nearby control points. The weight is constructed with
reference to the edges of a graph connecting the control points; in
our case, we used the Delaunay triangulation [2] (see fig. 2). A
control point c is said to have a set of axes, αi, where each axis
is an edge originating at c and terminating at its neighbour. The
point u is projected onto each axis, and the projected length is used
to determine an axial weight, Aαr. The axial weights are given by
cubic polynomial interpolants, decreasing from a maximum of 1
(exactly on the control point) to a minimum of zero (beyond the
axis length); use of the cubic allows zero gradient at both ends,
preventing discontinuities :

Aαr(p) = (1− p)2(1+2p) (1)

Finally, a given control point has a weight Wi (see fig. 1a), which
is the product of the axial weights:

Wi(u) = Π
p
r=0Aαr(pro jαr(u)). (2)

Note that the projection operation pro jαr returns a normalized
projection in the range 0-1; the projected length is given as a frac-
tion of the axis length, and clamped so that points beyond the axis
end project to 1, while points behind the axis project to 0. It’s also
possible to control the smoothness of the intensity interpolation by
changing the length of the axis (see fig. 4). Longer axes overlap and
produce smoother outcomes, albeit with approximating interpola-
tions rather than exact ones.

The texture value for a point in space is then the weighted sum of
the attribute values at the nearby control pointsP ′ ⊆P , normalized
by the weights:

T (u) =
∑
|P′|
i=0 TiWi(u)

∑
|P′|
i=0 Wi(u)

(3)

where Ti is a value, a scalar intensity or a color, stored with point
pi ∈ P ′.

We can further adjust the weights using an orientation attribute
associated with each control point. Orientation is a unit vector
in R3, used to shift the weight of its point towards a preferred
direction; call the orientation v. Suppose we are computing the
shifted weight for a point p ∈ R2 with respect to a control point at
c ∈R2. We first compute η = (p−c) ·v/|p−c|. Then we compute
the shifted weight w′, using equation 4, where the original weight
w ∈ [0;1] is the weight of the point from equation 2 and ε ∈ [0;1[
is a parameter governing the strength of the shift and K = εη (by
default, ε = 0.5). In equation 4, the exponent is in ]0;1] if K ≥ 0,
which increases the weight, and greater than 1 otherwise, which de-
creases the weight. The asymmetry of the exponent in the two parts
of equation 4 allows more drastic changes on control points facing
away from v. Figure 3 shows the effects of an orientation on the
weight distribution.

w′ =

{
w1.0−K i f K ≥ 0
w

1.0
1.0+K otherwise

(4)

We can adapt the intensity interpolation to produce basic cellular
textures, similar to those of Worley [17]. Each control point is given
a label attribute; pixels are given the label of the control point with
the highest weight. Because of the way weights are computed, the

(a)

(b)

Figure 1: The (a) weight of a point (brighter means more weight)
and (b) isovalues in its scalar field.

resulting cells approximate but are not exactly the same as Voronoi
cells; in particular, they are not bounded by straight edges. We
consider the appearance of the cells to be more organic and lively
than Voronoi cells. Using orientations, we are able to curve the cell
boundaries even further; this is illustrated in Figure 5.

3 TEXTURE VARIATIONS

In this section, we present algorithms to distribute control points
and assign their attributes so as to create a wide variety of textures.

3.1 Noise

Using the basic interpolation scheme over random data, we can cre-
ate a smooth scalar field similar to Perlin noise. The details of the
process are as follows. First, we place points over the plane in a
Poisson disc distribution. Then, we randomly assign an intensity
value to each point. We create a graph over the distribution by
finding the Delaunay triangulation. Then, we construct the noise
field by taking the PUPs interpolation as described in the previous
section. Four octaves of texture akin to Perlin noise are shown in
Figure 7.

Multiscale Perlin noise can be created by summing octaves of
with different point densities, and examples are shown in Figure 6.
These results use the equation

T (x) =
i=3

∑
i=0

Pi(x)2
−i (5)

where Pi are Perlin-like textures with Poisson disk distributions of
control points; the minimum interpoint distance is 0.1×2−i. Note
that we used separate textures for the different octaves, but because
our textures are tileable, we could have used a single texture and
changed the scale.

We can also reproduce Perlin turbulence [10], applying the fold-
ing transform T ′(x) = 2|T (x)− 0.5| to each octave; intensity is in
the range 0 to 1. The foldings of the individual octaves are shown
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Figure 2: Delaunay triangulations of P .

(a) (b) (c)

Figure 3: The weight shifting as the orientation is (a) almost aligned
with the z-axis to be (c) almost aligned with the x-axis; ε = 0.1.

in Figure 7 and the resulting turbulence texture appears in Figure 8.
Unlike regular Perlin turbulence, there are no lattice artifacts: the
Poisson disc control point distribution frees us from any such de-
fects.

3.2 Labels

We previously discussed how to create cellular textures by organiz-
ing points into groups with common labels. Here, we demonstrate
some of the different textures that can be achieved with this process.

Figure 9a shows a simple Voronoi-like cellular texture, obtained
by assigning each point to a separate group. It is not identical to
the Voronoi diagram; the use of orientation in the weight calcula-
tion disturbs the Voronoi boundaries. More interesting possibilities
emerge when there are multiple points per group: Figure 9b shows
a texture created by grouping points into clusters of three or four
points. In this case, the regions are even further from Voronoi re-
gions.

Multiscale cellular textures are another straightforward possibil-
ity. Two examples are shown in Figure 10. To obtain these, we cre-
ated 4 layers of cellular textures of increasing density and summed
them; higher densities have lower amplitude, as in multiscale Perlin
noise.

An entirely different type of structure can be created by assigning

(a) (b)

Figure 4: The same point set with (a) normal axis length and (b)
axis twice as long.

(a) (b) (c)

Figure 5: An (a) original point set, (b) the same point set with orien-
tation all pointing to the right and ( c ) with all orientation pointing
away from the center.

groups binary labels. In Figure 11 we see a texture resembling a
stereotypical cow pattern, obtained by randomly assigning labels to
points. The simplicity and unpredictability of this binary texture
give it a distinctly organic character.

A more elaborate example with two groups is called the space
giraffe, following the reaction-diffusion texture by Witkin and
Kass [16]. The principal objective in crafting this texture was to
control the irregular shape of the boundaries of the cells; a sec-
ondary objective was to prevent two cells from merging. The space
giraffe texture is shown in Figure 12; we next describe the process
used to create it.

We distribute cell centres with a Poisson disk distribution. For
each centre, we then find its nearest neighbour; the cell’s radius r
is taken to be half the distance to the nearest neighbour. We then
add further points surrounding the cell centre, as follows: choose
a random number n, say between 10 and 20, and place pairs of
points at angular intervals of 2π/n. The points are placed at radii
randomly chosen from the range 0 to r. At each angle, there is
an inner point (smaller radius) and an outer point (larger radius);
assign to the inner point the spot label and to the outer point the
background label. Create a new triangulation on this new point set
and apply the cellular texture generation process: the result is the
space giraffe pattern, examples of which are shown in Figure 12.

More elaborate structures, and in particular nonstationary struc-
tures, can be obtained by using a reference image to decide group
membership. In this variant, we distribute points using a Poisson
disk distribution and for each of these points, we check the inten-
sity of the corresponding pixel in the image. We select a random
value, and if that value is less than the reference intensity, we as-
sign that point to the white group, otherwise to the black group.
Figure 13 shows images created with the approach; with this refer-
ence image, the only gray regions are near the region boundaries,
so we get a few variations on the input texture with different feature
sizes. Note that for this process to be effective, the reference image
must be in grayscale.
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Figure 7: Multiple scales of Perlin-noise type textures, before and after folding.

(a) (b)

(c) (d)

Figure 6: Multiscale Perlin noise textures (four octaves).

In another variant, we propose to use an iterative version of the
previous process. The only difference is that we use the intensity
interpolation to create the textures, ensuring that there are regions
of intermediate intensity near region boundaries. At each iteration,
we double the point density, ultimately creating a fractal boundary
layer; four iterations are shown in Figure 14. Restricting the re-
gions where control point labels are chosen randomly is a powerful
technique, producing results that would not be straightforward to
make using other existing texture synthesis techniques.

Figure 8: Perlin turbulence: sum of folded textures from fig. 7

3.3 Progression

One of the main strengths of our method is its ability to use non-
stationary spatial distributions of points or spatially aware label as-
signments to produce progressively-varying textures in a systematic
way. The simplest example is that of Figure 15. This image shows
two examples of progressive cow textures, where the point density
becomes greater as you move to the right. The same random binary
labeling strategy is employed. The resulting texture shows an ob-
vious but continuous decrease in feature size as the point density
increases.

A more elaborate example appears in Figure 16, where again
the point density increases left to right. Here, we have used the
space giraffe process on an initial distribution. The method is robust
enough to produce irregular spots smoothly varying in size.
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Figure 9: Cells made of (a) one point per cell and (b) a few points
per cell.

(a) (b)

Figure 10: Noises with cells.

Changing the point distribution is one of the two mechanisms
for synthesizing nonstationary textures. Even with a stationary dis-
tribution of control points, we can create nonstationary textures by
applying labels using logic that depends on spatial location. For
example, we can create a texture ramp by assigning black or white
labels with a probability that depends on the point’s x-coordinate.
See Figure 17 for an example. Of course, other distributions are
also possible: this example only hints at the range of possibilities.

4 DISCUSSION

The images in the previous section demonstrate some of the textures
that can be generated using this method. We demonstrated analogs
to Perlin noise, Worley noise, some biological structures, and some
multiscale and progressive structures. The versatility of the method

(a) (b)

Figure 11: Two “cow texture” examples: Poisson disc distribution
of control points with random assignment of binary labels.

(a) (b)

Figure 12: Space giraffe patterns.

is one of its chief strengths.
The PUPs framework allows arbitrary control net topology while

maintaining local support of feature interpolation. We are able to
exploit this in making progressively variant textures such as the cow
textures in Figure 11, where the feature density varies spatially. An
alternative approach for building progressive textures is to vary the
attributes in a systematic way, e.g., as seen in Figure 15. The control
points provide discrete locations where the attributes are set, and the
PUPs interpolation propagates the values to the rest of the plane.

Figure 14 shows a process where the distribution of intensities
on the control points are distributed according to the intensity in
the previous image at the same location. At each iteration, more
points are used (in our case, we doubled the number of points used
in the previous image) allowing the creation of a sharper and more
detailed image each time.

The approach we presented has some drawbacks, however. We
have not much investigated color; while color can be interpolated
using the same process we used to interpolate intensity or group
membership, color assignment is a more challenging problem. In
our current prototype implementation, optimized for ease of exper-
imentation rather than for speed, rendering is slow: for a typical
case, a 1000× 1000 texture with 700 control points, rendering re-
quires approximately 30 seconds on a Quad-Core 1.3 MHz com-
puter with 8 GB RAM.

We have cited the control net as an advantage of our method, but
it has some disadvantages also. We used the Delaunay triangulation
to provide our graph; small changes in the position of points can
cause sudden changes in network topology, with correspondingly
sudden changes in the texture, albeit only local. For static textures
this is not an issue, but for manual editing of textures, or for ani-
mated textures, this would be a concern. Another drawback is the
need to match the control net resolution to the feature resolution;
arbitrary topology and local support allow us to do the matching
adaptively, but very high-frequency features are still costly. Explor-
ing different weight functions – for example, functions with oscil-
latory behaviour – might reveal a way to break that limitation.

5 CONCLUSION AND FUTURE WORK

In this paper we described an adaptation of the “partition of unity
parametrics” metamodelling framework for texture synthesis. We
showed how to create textures reminiscent of classic textures such
as Perlin noise and cellular texture, as well as novel textures includ-
ing intricate patterns with multiscale boundaries. Because the PUPs
interpolation method can propagate attribute values to the space be-
tween the control points, we can concentrate on procedurally dis-
tributing control points (for example, according to a Poisson distri-
bution) and on assigning attributes to the control points (for exam-
ple, randomly, according to spatial location or graph connectivity,
or according to a reference image).
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Figure 13: A reference image (image (a)) used to assign points to
groups in images with different point densities (images (b) (c ) &
(d)).

The method is able to generate stationary textures, but is not re-
stricted to doing so. Progressive textures, where the characteristics
vary smoothly from one image location to another, are possible.
Also, use of reference images allows us to create highly irregu-
lar textures; we also demonstrated an iterative point placement and
attribute assignment process, producing fractal boundaries reminis-
cent of coastlines. The ability to mix large-scale and small-scale
features is extremely powerful.

Opportunities for future work are numerous. The rendering
speed can be dramatically improved with a GPU implementation.
Further investigation along the lines we have already begun will re-
veal more types of patterns to be described procedurally. We are
interested in trying other triangulations or even non-planar control
net topologies, such as the Yao graph [18], and in performing direct
synthesis over polygonal meshes.

Animated textures are a direction to which this method seems
especially suited. The motion of the texture can be governed by
the motion of the underlying discrete structure. The main difficulty
here lies in smoothing out sudden changes in the texture arising
from sudden changes in the control net topology.

Finally, we are optimistic about the usability of the approach for
manual texture creation and editing. Building a tool for editing
PUPs-based texture is another area of future work.
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