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Abstract

Image abstraction traditionally eliminates texture, flattening gradients and removing small-scale details. However,
abstracting while preserving irregular silhouettes and medium-scale details can produce a richer abstracted image.
We propose a variant of geodesic image filtering which preserves the locally strongest edges, leading to preservation
of both strong edges and weak edges depending on the surrounding context.

Our contribution is to introduce cumulative range geodesic filtering, where the distance in the image plane is
lengthened proportional to the color distance. We apply the new filtering scheme to abstraction applications in images
and video, and demonstrate that it has powerful structure-preserving capabilities, especially regarding preservation
and indication of irregular details. The basic technique, where every pixel is equally abstracted, is further extended
with explorations of variable mask size based on spatial location, salience, intensity, and location combined with
intensity.
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1. Introduction

Since the beginnings of NPR, the field has been popu-
lated with algorithms for well-known artistic styles and
media. At the same time, there has been substantial in-
terest in pure abstraction techniques, i.e., methods for
creating a version of an input scene with markedly less
detail than a conventionally rendered image or a pho-
tograph. While early abstraction processes such as that
of Haeberli [1] sought a specifically painterly look with
explicit strokes, the more cartoon-like abstraction pre-
sented by DeCarlo and Santella [2] has become the
norm for NPR abstraction. Image abstraction mecha-
nisms based both on segmentation and on direct filter-
ing sought to remove detail, yielding images character-
ized by large uniform regions and smooth gradients, free
from texture.

Yet while it is often taken for granted that texture
should be removed while undertaking image abstrac-
tion, it is far from clear that painted or otherwise ar-
tistically created images lack texture. Artists often seek
to convey the material properties of surfaces, such as
roughness, and do so by careful use of strokes or other
drawing primitives. Some NPR algorithms seek to in-
troduce texture into images where it was formerly ab-
sent: for example, the watercolorization methods of
Bousseau et al. [3, 4] introduce high-frequency texture
to represent pigment granulation. Various example-
based techniques (e.g., Zhao and Zhu’s “Sisley” [5])
introduce extra texture also, seeking to recreate large-
scale image structures by placing large numbers of tex-
tured strokes. In both of these examples, texture is in-
troduced without reference to the textural properties of
the original image; instead, the texture is introduced to
mimic the appearance of the medium rather than por-
traying texture details from the scene. In this work, we
attempt to abstract input images while retaining small-
scale and medium-scale details; we use a conservative
smoothing process that preferentially avoids smoothing
across image edges, even very weak edges. Our mech-
anism preserves the locally strongest details, eschewing
the flattening effect common in image-based abstraction
techniques. The abstracted images are textured if and
where the original image was textured. Very small fea-
tures, whether texture elements or image details, fade
into their surroundings without vanishing; sometimes
this gives the impression of a ‘glazing’ effect resem-
bling watercolor. More importantly, the image retains a
sense of the surface structure visible in the original im-
age; preservation of irregular silhouettes, internal edges,
color variation, and intermediate-sized details all con-
tribute to this effect. Our results demonstrate detail

preservation using natural textures including examples
of bark, hair, fur, and rock surfaces, among others.

Numerous dedicated algorithms for image abstrac-
tion have been proposed over the years, some of which
we discuss in more detail below. This paper presents a
variation on the geodesic filter that has been specifically
designed for abstraction of textured images, where the
textured regions are abstracted but retain their irregular
shapes and ragged edges. The algorithm builds a ded-
icated mask for each image pixel, taking the nearest n
pixels according to a new “cumulative range” variation
of geodesic distance. The problem of texture indication
has been of longstanding interest to the NPR commu-
nity, and our mask customization process offers some
insight into how texture indication can be achieved. Re-
sults of our abstraction process are shown in Figure 1.

The main contribution of this work is the cumula-
tive range geodesic filter (CRGF) and a discussion of
some of its properties. The bulk of the paper is de-
voted to an exposition of the definition and character-
istics of the filter and a comparison of its output to that
of other generic abstraction methods. This portion of
the work was previously presented at NPAR [6]. The
current extended version of the paper includes explo-
rations of spatial variations of the level of abstraction
using the proposed filter. We discuss mask sizes based
on simple spatial calculations, semantically meaning-
ful user-defined regions, and some techniques for au-
tomated detail variation to produce additional visual ef-
fects, such as apparent contrast heightening. In addition,
we present the results of applying the CRGF to video;
the robustness of the method allows effective creation
of abstracted video simply by applying the method to
individual video frames. Before we discuss the CRGF
in detail, however, we first review some of the existing
methods for image abstraction.

2. Background

Some work in image abstraction depends on an initial
segmentation of the image; for example, DeCarlo and
Santella use an automatic hierarchical segmentation [2].
However, since our approach is filter-based, we will em-
phasize filter-based approaches in our survey.

The two concepts most relevant to this paper are the
bilateral filter [7] and geodesic filtering [8]. The bilat-
eral filter involves computing a custom arrangement of
weights for each pixel, where the distance of the cen-
tral pixel to each other pixel is a combination of spatial
distance and colorspace distance. Geodesic filtering in-
volves treating a 2D image as a 3D surface and comput-
ing distances from a pixel or group of pixels over the
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Figure 1: Some large-scale results. Clockwise from upper left: stranger; cliff; forked tree; ranch; autumn.

manifold [9]. Our proposed filter uses a geodesic dis-
tance where the incremental horizontal distance from a
starting pixel is proportional to the colorspace distance
of the current pixel to the original pixel. Results of ap-
plying the filter are shown in Figure 1.

The bilateral filter has been used explicitly for ab-
straction purposes, notably by Winnemöller et al. [10]
whose iterated approximation allowed real-time video
processing; Winnemöller et al. also noted texture indi-
cation as a goal, though this effort was only partly suc-
cessful. The domain transform presented by Gastal and
Oliviera [11] allows real-time edge-aware operations;
they presented it as an acceleration of bilateral filter-
ing and demonstrated a wide range of effects. Real-time
video processing was also an advantage of the geodesic-
based formulation presented by Criminisi et al. [8], one
aspect of which was image abstraction. Our naive im-
plementation is far from real time, but we believe that
the visual effect we present cannot readily be obtained
by other known techniques.

Orzan et al. undertook edge-preserving filtering [12]
based on the Poisson equation, with the explicit inten-
tion of removing small-scale, weak edges. We share
their goal of faithful edge preservation; like ours, their

output images contain gradients, which are suppressed
in approaches favoring flattening. However, weak edges
make frequent appearances in image texture, and elim-
ination of weak edges is a point of departure between
our goals and theirs. Strong edges are generally pre-
served in the flow-based process of Kang et al. [13], in
which custom smoothing kernels align to local edge tan-
gents, but weak edges are eliminated and region bound-
aries are simplified. Kass and Solomon [14] used lo-
cal histograms for abstraction effects, effectively pre-
serving strong edges and medium-scale details. Gradi-
entShop [15] is a versatile system operating in the gra-
dient domain; when employed for abstraction purposes,
weak edges and textures (e.g., hair) are abstracted away,
replaced by longer-range gradients. A related endeav-
our was reported by Olsen and Gooch [16], who used a
sequence of linear filters to prepare for the creation of
an edge image for subsequent stylization and compres-
sion; again, weak edges are eliminated and eventually
replaced by gradients in this approach.

Much work in edge-preserving abstraction has been
undertaken based on the Kuwahara filter [17, 18, 19,
20], a nonlinear edge-preserving filter. Such work has
not sought to preserve texture; in fact, Papari et al. [17]
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have the stated goal of eliminating texture. As we ar-
gued above, texture removal should not be held out as
the sine qua non of abstraction: only certain styles of
imagery are texture-free. In the remainder of this paper,
we demonstrate a style of abstraction in which the tex-
tures are muted and abstracted to a degree but, by de-
sign, preserved sufficiently to be communicated to the
viewer.

3. Algorithm

Bilateral filtering uses a fixed mask shape with cus-
tom weights for each pixel within the mask, depending
on the mask’s location. In contrast, we propose a filter-
ing process which creates a customized mask shape for
each individual pixel but with uniform weights within
the mask. The mask consists of the n pixels nearest to
the centre, where “nearest” is with respect to a particu-
lar distance formulation, explained in detail below, that
incorporates aspects of both bilateral and geodesic fil-
ters. Edge preservation, even of weak edges, is a natural
consequence.

Let I be an image, whose pixel values are greyscale
or color; we refer to “intensity” below without loss
of generality, but in practice compute color distances
in RGB space. Distances between arbitrary pixels are
computed as the infimum of path costs among possible
paths connecting them. More formally, using notation
adapted from Criminisi et al. [8], for pixels a and b, the
distance d(a, b) is defined as follows:

d(a, b) = infΓ∈P (a,b)

∫ l(Γ)

0

C (Γ, s) ds (1)

where the integration occurs over the arc length s of the
path, from 0 to the total path length l(Γ). The func-
tionC(Γ, s) is the infinitesimal cost of proceeding along
path Γ at s and is given by

C(Γ, s) = |I(a)−I(Γ(s))|+γ|∇I(Γ(s)) ·Γ′(s)|. (2)

In equation 2 we wrote I(a) to indicate the intensity at
the beginning of the path, but could equivalently have
written I(Γ(0)).

In equation 1, P (a, b) refers to the ensemble of paths
linking a and b; Γ is one such path, parameterized by arc
length s. Note that Γ(s) ∈ <2 is a location in the image
plane. The image intensity at a location x is given by
I(x). The formulation ∇I(Γ(s)) · Γ′(s) is the compo-
nent of the image intensity gradient parallel to the path
direction. The parameter γ weights the relative impor-
tance of local edge-crossing versus deviation from the
original pixel color.

In practice, we do not use equations 1 and 2 directly.
Rather, we use a front propagation method to add pixels
to the mask one by one. The incremental distance when
proceeding from pixel g to pixel h is

|I(h)− I0|+ γ|I(h)− I(g)| (3)

where I0 = I(a) is the intensity at the first pixel of
the path, or equivalently, the intensity at the centre of
the mask. The two terms of equation 3 map to the two
terms of the right hand side of equation 2: the first term
is the intensity difference between the original pixel and
the incremental pixel, and the second term is the dis-
crete version of the gradient along the direction of the
path, i.e., simply the difference in intensities along the
path increment. The formulation of equation 3 makes
obvious the role of the original pixel intensity in con-
trolling the overall region shape. Typically we use mask
size (pixel count) to control the termination of mask ex-
pansion; in section 6 we also discuss the possibility of
using cumulative distance to decide on mask size. Once
the mask has been computed, we use a box filter over
the defined domain to obtain the output color value.

Better intuition for the mask shape customization can
be gleaned from Figure 2, which shows some example
masks (n=180,γ=1). The original pixel is shown with a
black circle and the region boundary with a heavy red
line. Notice how the mask avoids crossing strong edges
(left hand example) and how the mask can become very
irregular in order to conform to highly irregular struc-
tures in the image (right hand example). Ultimately, the
mask is a contiguous region, possibly with holes, con-
sisting of those pixels whose cumulative distance to the
starting pixel is smaller than that of other nearby pixels.
In practice, this typically means pixels of similar colors,
although note that a large mask size may mean that very
dissimilar pixels can be included if insufficient numbers
of similar pixels are reachable.

Figure 2: Irregular masks.

Figure 3 shows a visual comparison to geodesic flat-
tening. (The original image is included as part of Fig-
ure 5.) Our result better preserves texture, as intended;
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Figure 3: Comparison with geodesic flattening. Left: geodesic output;
right: our result. Former image provided by Criminisi et al. [8].

pay particular attention to the hair above and behind the
ear, which has been significantly blurred by geodesic
flattening but is more gracefully abstracted with our
technique. While the lack of smoothing of texture over
the face may not be desirable in this instance, the texture
is indeed present in the original, illustrating that the ab-
straction style chosen must be consonant with the user’s
aims.

The difference seen between the proposed method
and geodesic smoothing is not an accident. Geodesic
approaches (based on range distance plus integral of
gradient magnitude) always penalize edges, but do not
directly consider intensity difference from the source;
our method does not always penalize gradients, but flat
regions of intensity different from the source pixel are
heavily penalized. Consider the illustration in Figure 4.
The original intensity profile, beneath, contains an area
of high variance adjacent to an area of low variance with
a different average intensity. Distances from the pixel at
x=0 are illustrated above. The geodesic distance (green)
jumps suddenly when crossing the edge, but rises slowly
thereafter, as local gradients are small. The cumulative
range distance, however, rises quickly and steadily af-
ter crossing the edge. Conversely, the geodesic distance
rises relatively quickly in the textured area, as numer-
ous small gradients must be crossed; the cumulative dis-
tance rises much less quickly, since despite local varia-
tions the intensity does not stray too far from that of the
starting pixel. Whether used to create a mask, as in the
present proposal, or used to compute weights for a local
averaging process, the cumulative range and geodesic
distances treat texture in quite different ways that cannot
be reconciled simply by selecting parameters or making
other superficial changes.

In the following, we demonstrate the practical effect
of the filter by applying it to several test images and
showing comparisons to existing abstraction methods.

-40 -20 0 20 40 60

Image Intensity
Geodesic
Cumulative Range

Figure 4: Comparison of geodesic vs. cumulative range distance.

4. Results from Fixed Parameters

4.1. Images
Several examples were shown in Figure 1. The orig-

inal images for our examples and comparisons can be
seen in Figure 5. Since appreciating the results depends
on careful attention to small-scale details, we recom-
mend viewing these images on screen and at a high
zoom level.

We chose sample images that contain large textured
regions. The different types of texture are generally rec-
ognizable in the abstracted images. In the cliff image,
perserving the texture is especially important since it of-
fers a natural way to depict the motion of the water, ap-
parent even in this still image. Areas which lack texture,
such as the house in the ranch image, are more conven-
tionally flattened. The remainder of this subsection dis-
cusses specific details of some of these images.

Figure 6 shows the basic texture abstraction and edge
preservation properties of the algorithm. In the top im-
age pair, notice how the texture is muted without being
obliterated: the dynamic range has been locally com-
pressed, but the details are still subtly present. In partic-
ular, irregular structures remain visible: e.g., the foam
boundaries on the upper right. In the middle pair, the
corrugated bark texture is still apparent, and the silhou-
ette of the tree has been preserved. The bottom image
has been selected to demonstrate strong edge preserva-
tion: the complex silhouette of the fabric is unchanged
while the higher-frequency details within the body of
the cap are abstracted.

Thin but extended linear features can be difficult to
preserve using other approaches; segmentation-based
approaches find them particularly challenging. How-
ever, our method quite naturally maintains linear fea-
tures: as long as enough similar-colored pixels lie in a
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Figure 5: Original images for the abstractions used throughout this paper.
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Figure 6: Texture abstraction and edge preservation. Top: wave detail
from cliff image; middle: bark detail from forked tree image; bottom:
detail of cap from stranger image. Left: originals; right: filtered.

Figure 7: Linear feature preservation. Above: detail from autumn im-
age; below: detail of stranger’s beard. Left: originals; right: filtered.

contiguous region, regardless of shape, the masks can
stretch to collect them. Figure 7 illustrates preserva-
tion of linear features. While the masses of leaves and
the main part of the beard are abstracted, individual
tree branches and hairs remain visible, hinting at the
overall structure without portraying it explicitly. For a
non-texture example of linear feature preservation, look
at the whiskers of the cat in Figure 12. The yellow
leaves in Figure 7, combined with the slight paling of
the smaller branches, provides a striking example of the
watercolor ‘glazing’ effect alluded to earlier. The leaves
of Figure 8 provide another example. Edge-preserving
fading is discussed in more detail in the folowing sub-
section.

Figure 8: Subtle texture edges and irregular regions.

While Figure 6 has examples of preserving strong
edges, we are also interested in weak edge preservation.
Because of the custom mask shape, even weak edges
can be preserved if they are locally the strongest. This
is sometimes a subtle effect, but it is apparent in Fig-
ure 8, especially the spray near the cliff in the middle
image. The water contains many low-intensity edges
that are nonetheless maintained in the abstracted output.
A larger-scale example of this is the shadow of the cliff,
seen in full in Figure 1. Although the intensity of the
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shadow edge varies considerably from place to place, it
always represents a sufficient change in contrast that the
masks rarely straddle it. Figure 8 also contains further
examples of irregular texture regions in the water and
foliage. Particularly note the muted irregular structures
in the abstracted mass of leaves, indicating the details
but leaving it to the mind of the viewer to fill them in.
The ragged silhouette helps considerably in furthering
the illusion of detail.

4.2. Comparisons
In the following, we provide visual comparisons

to some recent and relevant abstraction techniques:
structure-preserving photo manipulation [12]; closest-
mode histogram filtering [14]; the multiscale Kuwahara
filter [20]; and bilateral filtering [7]. We previously gave
a comparison to geodesic flattening [8]. Original images
for the results in this section are part of Figure 5.

Figure 9: Comparison with structure-preserving photo manipulation.
Left: result from Orzan et al. [12]; right: our result.

Figure 10: Comparison with closest-mode histogram filtering. Top:
result from Kass and Solomon [14]; bottom: our result with n = 300.

Figure 11: Comparison with multiscale Kuwahara filter. Left: Kuwa-
hara filtering; right: our result. Former result provided by Kypriani-
dis [20].

Figure 9 compares our filter with structure-preserving
photo manipulation [12]. Like us, Orzan et al. intend
to faithfully preserve strong edges; the two methods
are approximately equally successful at this. However,
Orzan et al. deliberately seek to eliminate weaker edges,
with the consequence that the detail on the petals, the
texture on the fruit, and even an entire faint leaf (above
the upper white flower) are largely removed. These tex-
tures are not particularly well defined in the original im-
age, yet our method somewhat suggests them. A subtle
point is the texture on the object behind the fruit: en-
tirely smoothed by photo abstraction, nonetheless our
result conveys a delicate sense of half-glimpsed surface
detail.

Figure 10 gives a comparison between our method
and closest-mode histogram filtering. Local histogram
filters were proposed by Kass and Solomon [14]; the
closest-mode variant has similar edge-preserving prop-
erties to ours. However, weaker edges are not preserved,
such as the front wheel of the tractor, or the shading on
the rim of the larger wheel. Conversely, small distinct
objects are well preserved, such as the white marker
posts in the field, on the middle left of the image; to
our eye, these are somewhat distracting details ill-suited
for preservation. In our result, the tractor wheels remain
defined, while the markers have faded.

Figure 11 shows our attempt to deal with an espe-
cially difficult image, presented by Kyprianidis [20] as
a failure case for multiscale Kuwahara filtering. While
we agree that this is a challenging image and our result
is not completely clear, we are able to maintain some
separation between the bush and the middle ground and
avoid the overblurring visible in the output of the Kuwa-
hara filter. The textures on the distant mountains have
been abstracted nicely.

Figure 12 compares a successful outcome from
Kuwahara filtering to our approach. We have also in-
cluded the bilateral filtering result in this figure. Com-
pared to both single-scale and, especially, multiscale
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Figure 12: Comparison with multiscale Kuwahara filter. Left to right:
bilateral filter; anisotropic Kuwahara filtering; multiscale anisotropic
Kuwahara filtering; proposed filter. The first three images are pro-
vided by Kyprianidis [20].

anisotropic Kuwahara filtering, our result better sug-
gests the underlying texture. Our filter flattens the image
but the resulting mostly-uniform regions have irregular
boundaries and the silhouettes are ragged, better con-
veying a sense of the fur. The whiskers are also better
preserved, particularly in the image’s upper left where
the contrast with the cat’s fur is relatively low. More
subtle surface details are preserved as well: the rough
surface of the cat’s tongue is suggested by the irregular
internal edges, eliminated entirely by Kuwahara filter-
ing.

With respect to the bilateral filter, our result appears
more muted, having removed small high-contrast ele-
ments such as the black spots around the cat’s nose and
mouth. Similarly, contrast has been reduced in the fur
across the cat’s forehead. At the same time, our tex-
ture detail is in many places superior to the result from
the bilateral filter: for example, subtle distinctions have
been maintained on the sides of the cat’s face. This at-
tests to the difficulty of using a single parameter set-
ting for the bilateral filter to preserve edges of different
scales.

This difficulty is further illustrated in Figure 13,
which compares the proposed filter and the bilateral fil-
ter. The original synthetic image is a series of ideal
vertical step edges corrupted with uniform noise; the
noise has higher magnitude at higher intensities. We
show a horizontal cross-section, with the original data
in light grey. With the settings used, the bilateral filter
recovers intermediate intensity discontinuities well, but
smaller edges are smeared out. At the same time, the

Figure 13: Response to synthetic data. Above: proposed filter; below:
bilateral filter. Original noisy data shown in light grey.

larger quantities of noise are little smoothed. In gen-
eral, the bilateral filter offers a tradeoff between pre-
serving edges and preserving noise or fine detail. For
applications to detailed images with complex and het-
erogeneous edge magnitudes, it is not possible to find a
single setting for the bilateral filter to treat the entire im-
age properly: in the example, the setting that works well
for intermediate noise values oversmooths small edges
and undersmooths large noise values. Conversely, the
proposed filter automatically adapts to the noise levels.
It has better edge localization for the smaller edges; al-
though to some extent it treats the noise as edges to be
preserved, the noise pixels are incoherent and its abil-
ity to preserve them is limited by the unavailability of
sufficient numbers of pixels of similar color: i.e., inco-
herent noise is always attenuated. Larger noise values
leave a larger residual noise after smoothing, but are
still smoothed more than by bilateral filtering. Note that
while the noise removal applications of the proposed fil-
ter may be limited, we are not proposing the method for
noise removal proper, but rather abstraction; the small-
scale intensity changes that are best preserved are those
which are coherent over a region roughly the size of the
mask or larger. Coherent intensity changes are exactly
those which we do want to preserve.

4.3. Video

We applied the method on a frame-by-frame basis to
video. Here, we report the outcome of this exercise.
We chose a video sequence using two criteria: first, it
should have a variety of scenes and activities; second,
it should contain considerable texture and rich visual
detail. We selected a short film about forests (created
for 2011’s “International Year of the Forest”[21]) which
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Figure 14: Video frames
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comprises a series of short clips, each typically only 5-
15 seconds in length; the subject matter (forests of the
world) naturally provides ubiquitous texture detail to
demonstrate the effectiveness of our method. Individ-
ual frames (approximately 0.5 seconds apart) are shown
in Figure 14.

On watching the video sequence in motion, one ob-
serves high coherence. Objects seem to move as units
and there is minimal flicker. The film was uniformly ab-
stracted with a mask size of 240, resulting in a medium
to high level of abstraction, as can be seen in the sample
frames in the figure. Smoke and dust clouds are neatly
preserved and the motion of detailed amorphous phe-
nomena such as spray in waterfalls is straightforwardly
conveyed by the abstracted video.

Watching closely, one can observe a few spurious be-
haviors. Small objects such as leaves can take on the
color of the background, with curious results when the
background changes. Fine details can become blurred,
akin to the treatment of the leaves at the top of the forked
tree in Figures 1 and 17, and in motion this can give the
impression of a solid surface rather than a collection of
leaves and branches. However, these are minor limi-
tations and overall we consider the application of the
technique to video to be quite successful.

5. Parameter Variations

Here we discuss the effect of changing parameter set-
tings, n and γ. The filter size n has the stronger effect
on the results, and we devote most of our efforts to in-
vestigating it. We first show the results of changing it
uniformly over the image, then describe some schemes
for varying n on a pixel-by-pixel basis over the image,
using spatial, semantic, or intensity information.

Figure 15 shows the effect of changing the filter
size n. Unsurprisingly, larger masks produce more ab-
stracted images: features of size larger than the mask
can straightforwardly be preserved, while smaller fea-
tures begin to disappear. However, the small features do
not become blurred, but instead gradually fade. This ef-
fect is most apparent in the dark rock in the upper right
of Figure 15.

The fading phenomenon is due to the asymmetry in-
herent in our formulation. If pixel b is part of the mask
for pixel a, there is no guarantee that pixel a will belong
to b’s mask. In general d(a, b) 6= d(b, a). In the con-
text of the black rock, the behavior manifests as follows:
when possible, the black pixels form masks which oc-
cupy only black pixels, but when the mask size is larger
than the rock, part of the mask necessarily extends into
the water, lightening the box filter output. Conversely,

the lighter pixels near the rock have a huge area of light-
colored pixels in which to form their masks, and they
never need to extend into the black rock. Thus, though
the rock fades, it has little influence on the color of the
water pixels, and the shape of its outline is preserved.

Figure 16 shows the effect of changing γ. With low
γ, the deviation from the origin dominates, and we
have high detail preservation. With high γ, the mask
tends to extend into nearby smooth regions regardless
of whether they are similar to the original pixel’s color,
so detail tends to be lost. In general we prefer the look of
low γ, but for specific images or more aggressive detail
removal, higher γ may be preferred. Unless otherwise
stated, all images in this paper were created with γ=1.

5.1. Spatial Variation of Mask Size

Thus far we have considered only constant mask size,
relying on adaptive mask shape for detail preservation.
However, mask size can be set independently at each
pixel, leading to different effects such as improved con-
trast or emphasis. Here and in the following few subsec-
tions, we discuss some possibilities for adjusting mask
size locally.

The first and simplest way to adjust mask size it to set
mask size according to location in an image. Figure 17
shows two examples: in the left image, the abstraction
level increases with distance from the bottom, and in the
right image, the abstraction level increases with distance
from the centre.

In the case of the tree image, the effect is to make the
treetop seem to recede into the distance. The trunk itself
appears solid, but the upper leaves are more ephemeral.
In the case of the ruins, the effect is reminiscent of
a depth-of-field blur effect, where attention is concen-
trated on the sharper foreground objects, but because of
the inherent detail-preservation properties of the filter,
we are able to achieve the effect in postprocessing with-
out explicit segmentation. More complex scenes can
benefit more strongly from segmentation, as we see in
the next subsection.

5.2. Semantic Variation of Mask Size

We manually segmented images into regions of low
salience and regions of high salience, then applied the
abstraction process with two different mask sizes: n =
40 for high salience and n = 400 for low salience.
Figure 18 shows the outcome of this process as well
as comparisons with uniform abstraction. In the uni-
form low-abstraction case, the background is distract-
ing, drawing attention away from the subjects. In the
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Figure 15: Effect of changing size of region. Left to right: region sizes 40, 80, 160, 480, and 800 pixels.

Figure 16: Effect of changing γ. Left to right: original, γ=1, γ=8, γ=64.

Figure 17: Spatial variation of mask size. Forked tree: n rises vertically from 20 to 400. Ruins: n rises radially from 25 to 400.
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uniform high-abstraction case, the filtering is too ag-
gressive: the subjects are flattened and the result un-
appealing. The masked result draws attention to the
salient areas, while the background appears to recede,
yet the context of the scene is still apparent. Still more
aggressive filtering of the background, as with existing
abstraction processes, would not be appropriate in these
cases, since the backgrounds are highly detailed. The
autumn forest behind the tourists, and the faces of the
crowd and the textured sweater of the protestor, are still
apparent after application of our filter; however, the con-
trast is muted and these areas no longer call the viewer’s
attention as strongly. Further, because some abstraction
occurs everywhere, the boundaries of the semantic re-
gions are not too jarring. In fact, the regions have been
quite crudely drawn, not necessarily conforming exactly
to the subjects, but this has not had a detrimental effect
on the abstraction effect or the salience emphasis. This
suggests that lighter-weight but inexact techniques for
estimating salience, such as eye tracking, would be ef-
fective for this application.

5.3. Intensity-based Variation of Mask Size

Semantic variation is most worthwhile when the im-
age contains distinct objects which can be segmented
from the background, but is less feasible for textures or
for tiny details. Here, we vary mask size based on im-
age intensity in order to increase contrast or to better
preserve specific details which can be distinguished by
their intensity levels.

In our implementation of intensity-based mask size,
we compute mask size n by linear interpolation between
nmin and nmax according to a pixel’s intensity distance
from the least-abstract intensity level, say I0. That is,
n(x, y) = nmin +N |I(x, y)−I0|×(nmax−nmin), where
N is a normalizing constant. For I0 = 0 and I in the
range 0 − 255, we would have N = 1/255. In the
examples, we use nmax = 240 and nmin = 20.

An example result is shown in Figure 19. Much of
the structure of the rock wall is conveyed by the self-
shadowing, but small dark shadow areas fade when uni-
form abstraction is applied, making it harder to appreci-
ate the rock surface. Using intensity-based abstraction
(I0 = 0) better preserves these specific details, while
still applying a strong abstraction effect to the image as
a whole.

Another pair of examples appears in Figure 20. On
the left, we set I0 = 255 with the intent of better pre-
serving the small light features, especially the kitten’s
whiskers. On the right we have I0 = 128 to preserve
intermediate-lightness detail in the waves. In both cases

Figure 19: Abstraction of “Sedona” image. Above: uniform abstrac-
tion. Below: less abstraction of dark pixels.

we retain a strong abstraction effect while preserving
details of lightness close to the selected value.

Figure 21 compares intensity-based abstraction to
uniform abstraction in selected regions of the images.
In the Sedona image, we can see the surface of the rock
wall much more clearly, owing to the preservation of
small dark areas. In the kitten image, the whiskers stand
out more clearly from the surrounding fur. In the cliff
image, small details of the wave structure has been pre-
served, leading to an effect of texture indication.

As described, the effectiveness of simple intensity-
based mask resizing depends crucially on finding a sin-
gle intensity value that captures the details of interest.
In many images, no such value exists. A more elaborate
scheme computes mask size based on a pixel’s devia-
tion from the local average, thus preserving all details:
n = nmax − k × |I(x, y)− Ī|, where the amount of de-
tail is parameterized by k. The value of n is clamped
below by a value nmin. Applying this technique gives an
abstraction where small details and sharp edges are pre-
served, giving the appearance of constrast enhancement.
An example is shown in Figure 22.

13



Figure 18: Abstration extent governed by semantic regions. Topmost: manually created regions; next: low abstraction everywhere; next: low
abstraction within regions, high abstraction elsewhere; bottom: high abstraction everywhere.
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Figure 20: “Kitten” and “cliff” with abstraction based on intensity.

Figure 21: Comparison of uniform abstraction (right) and intensity-
based (left). Dark self-shadowing on the rock wall, the kitten’s white
whiskers, and isolated grey shapes on the waves are all more promi-
nent in the intensity-based result.

Figure 22: Comparison of uniform abstraction (above) to delta-based
abstraction (below).
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6. Controlling Mask Size with Cumulative Distance

In the previous sections, we exclusively relied on
mask size (measured by counting pixels) to control the
extent of abstraction. We varied mask size spatially or
by intensity. However, subtly different abstraction ef-
fects emerge when we adjust mask size according to
cumulative distance or, more meaningfully, the rate of
increase of cumulative distance.

Replacing mask size with cumulative distance di-
rectly has the effect of limiting abstraction while not
limiting runtime. Areas of high uniformity, least in need
of smoothing, will see enormous masks; masks centred
on outliers will be small. The former effect can be ame-
liorated by enforcing a maximum region size, regardless
of distance; the latter effect implies that outliers will be
little smoothed and is an inevitable effect of terminat-
ing mask expansion based on cumulative distance trav-
elled. Even so, direct use of cumulative distance does
not produce attractive results: generally uniform ar-
eas are oversmoothed, and outliers are undersmoothed.
Some example results are shown in Figure 23. For the
“country road” example, the high-contrast leaves in the
foreground have been jarringly undersmoothed, while
the trees in the background and the road in the mid-
dle distance are oversmoothed. In the “winter” exam-
ple, the dark spaces between the snowy branches are
undersmoothed, while the snow itself and the tree trunk
are oversmoothed, destroying the subtle details formerly
visible.

Sample profiles of cumulative distance with respect
to mask size increase are shown in figure 24. The pro-
files are typically simple in shape. In smooth regions
or uniformly textured regions, the profiles are approxi-
mately linear. In cases where the initial pixel is substan-
tially different from its surroundings, we observe a con-
vex curve: an initial steep increase in cost, slowing as
the distance grows and more pixels are reachable with
little incremental distance. Rarely, curves can be con-
cave, with an initially small slope followed by a sharp
increase in incremental cost; this shape is characteris-
tic of masks originating withing a small solid-colored
region distinct from its surroundings.

Examining cumulative distance as the mask grows
provides a better basis to set the target mask size. Our
intended policy can be summarized as follows:

• If the cumulative distance increases slowly, there
is little local variation beneath the mask: every
nearby pixel is similar to the original pixel. To im-
prove performance and to preserve what little de-
tail is there, we ought to use a small mask.

Figure 23: Filtering governed naively by distance. Above: country
road; below: winter.
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• If the cumulative distance increases quickly, the
most similar nearby pixels are quite different from
the original pixel. The original pixel was an outlier
or part of a very small detail. We should use a very
large mask size to eliminate the detail.

• If the cumulative distance increases at an inter-
mediate rate, either the original pixel was slightly
different from an otherwise-uniform surrounding
region, or the surrounding region contains a het-
erogenous mixture of pixel colors. Mild abstrac-
tion with a mask of intermediate size is warranted.

We implemented this policy as follows. We follow
the previously described process for every pixel using a
small mask size, say n = 40. Then, we compute the
average cumulative distance of the nth pixel; call this
value D. The value D provides a simple benchmark
to estimate whether distance is rising quickly or slowly
relative to the rest of the image; we use f × D for a
user-defined f , where a cumulative distance below fD
is considered slow, and the ratio r = d(n)/(fD) char-
acterizes the rate of increase otherwise. The mask size
is set to 1.5 times the original small mask size for r < 1,
and 1 + r otherwise. A plausible range of f is approxi-
mately 0.2 to 0.8; f = 0.5 is usually effective. We cap
the mask size at 500 pixels.

Results from this scheme are shown in Figure 25.
These images show a good mix of abstraction and detail.
Some small details, such as the foreground leaves from
the country road result, or snow on the tree trunk in the
winter image, are still highly visible; other details have
been abstracted away. Subtle variations remain; the dis-
tant foliage in the country road image, and the bark in
the winter image, are both suggested. Some specific de-
tails are shown in Figure 26. As can be seen in these ex-
amples, using a fixed distance value to terminate mask
expansion sometimes oversmooths and sometimes un-
dersmooths, while using the more elaborate policy we
outline avoids both problems.

7. Discussion

The proposed filter is an edge-preserving abstrac-
tion method with the ability to preserve weak edges as
well as strong ones, if the weak edges are locally the
strongest. It preserves features of size approximately
the size of the mask, where “size” measures the num-
ber of pixels but not necessarily the spatial extent. Pre-
served edges and features can be highly irregular in
shape.
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Figure 24: Sample plots of cumulative distance for different images.
Clockwise from upper left: autumn park; rough water; Sedona; forked
tree.
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Figure 26: Details from “country road” and “winter” images. Above: filtering terminated by distance; below: mask size guided by distance-aware
policy.

Figure 25: Filtering with mask size governed by estimated rate of
change of distance. Above: country road (f = 0.8); below: winter
(f = 0.3).

The main limitation of the proposed filter is its speed.
Bilateral and geodesic filtering have benefitted from re-
cent advances which make them extremely fast, but our
unoptimized single-threaded prototype implementation
is orders of magnitude slower: the speed is O(kn) for a
k-pixel image with mask size n. For typical images in
this paper (roughly one megapixel), with n = 160, our
processing time is 2-3 minutes, which includes time-
consuming debugging and tracking processes.

The property of weak edge preservation is beneficial
when weak edges represent real structure, but the algo-
rithm also preserves noise to some extent. In practice
this would be ameliorated by lightly preprocessing the
input with another filter.

Finally, not all textures can be adequately preserved
using the proposed approach. Very high frequency tex-
tures still tend to be suppressed. Figure 27 shows an
example: the noise-like texture of the sand in the fore-
ground is almost entirely removed, leaving only the
shapes and shadows of the driftwood in the middle
ground. This is quite like a traditional image abstraction
result, but we consider it a failure case for our method
given our objective of texture preservation. A user can
potentially address this with automatic mask size varia-
tions, but tuning the parameters to achieve a particular
effect may not be easy.

8. Conclusion

We have presented a novel variant of geodesic filter-
ing, in which horizontal distance over the image man-
ifold is locally stretched by the range distance to the

18



Figure 27: Left: original; right: filtered. The sand texture is not pre-
served.

origin. We made use of this distance to build custom
masks; box filtering over such masks yields a texture-
preserving abstraction effect. This is an effect rarely
seen in past abstractions, which mainly concentrated on
flattening the image and removing texture.

We showed images demonstrating the properties of
the filter: its adherence to strong edges such as silhou-
ettes; its ability to convey weak and irregular edges; its
preservation of extended linear features; and its attenu-
ation of isolated small features. A rarity in having been
designed for texture abstraction, this method produces
images visually distinct from those of other methods.

The main drawback to the proposed approach is its
slow speed, so the obvious goal in future work is to ad-
dress this. The existing approach can straightforwardly
be parallelized to take advantage of multiple cores, and
we would also like to investigate a GPU implementation
and alternatives to naive front propagation. Improving
the speed would make the application to video more fea-
sible in practice; while already possible, it requires con-
siderable patience at present.

Future work also includes exploring a multiscale ver-
sion of the proposed filter and using the technique for
texture and edge enhancement as well as abstraction. Fi-
nally, we would like to consider other distance functions
so as to extend the range of stylization effects achievable
within the geodesic framework.
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