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Abstract We introduce a method to stylize pho-

tographs with auxiliary textures, by means of the

Laplacian pyramid. Laplacian pyramid coefficients from

a synthetic texture are combined with the coefficients

from the original image by means of a smooth maxi-

mum function. The final result is a stylized image which

maintains the structural characteristics from the in-

put, including edges, color, and existing texture, while

enhancing the image with additional fine-scale details.

Further, we extend patch-based texture synthesis to in-

clude a guidance channel so that texture structures are

aligned with an orientation field, obtained through the

image structure tensor.

Keywords Image Stylization · Laplacian Pyramid ·
Texture Synthesis

1 Introduction

Texture plays an important role in our appreciation

and understanding of images. It can serve as a visual

replacement for the tactile qualities that images lack,

and prompt the photographed subject matter to ap-

pear more lively and interesting. Many photographers

have realized this potential and have used textures to

enhance their images. Often the intent is to transform

an ordinary photograph into an artwork that contains

characteristics of paintings, e.g., cracks, background

materials, and brushstrokes. Other times, the intent is

to create a “vintage” look, brought on by artificially

weathering digital images. Figure 1 shows a photograph
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where an artist has used commercial image editing soft-

ware to manually add texture.

Fig. 1 Manual image blending effects. Bill Showalter, Barn
at the end of the line, 2017.

Alpha blending is the obvious way to combine a tex-

ture and an image. However, alpha blending has disad-

vantages: contrast is reduced, colors may be altered,

and edges fade. Manual blending with per-pixel alpha

is possible, but limited. In addition, it is often desirable

for new textures to follow the orientation of the struc-

tures in the original image. For example, performing

texture augmentation on a photo of a pet, an appeal-

ing option is to align the example texture with the fur

orientation. Accomplishing this manually would be te-

dious and likely beyond the capabilities of many users.

Texture transfer is a related problem, but it com-

pletely replaces the original image with content from

the texture. Conversely, in our approach, we want to

preserve the edges and textures from the original im-

age. In fact, the result of our method will exhibit the

large-scale characteristics of the original, yet it will be



2 Lars Doyle, David Mould

Fig. 2 Result from our texture augmentation method.
Above: original; below: our result using α = 0.2. Texture
example is shown in the inset.

stylized with high-frequency details that are taken from

an external texture source. These details could either

be a simple background grain or any high-frequency

texture that looks interesting when embedded within

a photograph. Our method provides a novel tool that

digital artists can use to create images that deliver a

rich visual experience to the viewer. Figure 2 shows a

result from our texture augmentation method. Notice

that the outlines of the building remain crisp against

the newly added texture, which is most visible in the

low-frequency areas of the sky.

Contribution. We propose a novel artistic stylization

method that augments an image with external textures.

These textures are added with a method that preserves

the edges, color, and textures from the original image.

We have two major contributions:

1. We propose merging an image with a texture by

mixing the coefficients of their Laplacian pyra-

mid representations. The coefficient mixing uses the

smooth maximum [11] function. Combining an im-

age and a texture in this way retains the structural

characteristics from the image while augmenting it

with the fine-scale details of the texture.

2. We propose an irregular tiling based on SLIC super-

pixels [1] for patch-based texture synthesis. In the

context of combining an image and a texture, the

SLIC patches not only provide an irregular struc-

ture, making artifacts less noticeable, but also align

with image edges, further concealing defects in the

synthesized texture when it is integrated with the

image.

2 Related Work

Image pyramids. Image pyramids are useful for ma-

nipulating and analyzing images at multiple scales.

Broadly speaking, image pyramids are created by

smoothing and downsampling the input image, creating

a version half the size in both the horizontal and ver-

tical dimensions, and then repeating until some stop-

ping condition is reached – for example, the image is

reduced to a single pixel in one of its dimensions. Gaus-

sian smoothing yields the common Gaussian pyramid.

Burt and Adelson introduced the Laplacian pyramid [8]

whose levels consist of the difference images between

successive levels in the Gaussian pyramid. Its coeffi-

cients represent the details and edges at different spa-

tial scales of the input image. A variant of the image

pyramid omits downsampling, yielding filtered images

the same size as the original; in this case we refer to the

resulting decomposition as an image stack.

While the original purpose of the Laplacian pyra-

mid was image compression, it has been repurposed to

include multi-resolution image blending [9], detail/tone

manipulation [31], and style transfer [4,36]. For exam-

ple, Shih et al. [36] rescale the individual coefficients

of a Laplacian stack to transfer the characteristics of

high-quality portrait photographs to casual snapshots.

Other authors stylize images using an image decom-

position based on the Bilateral filter [38]. This variant

enables detail and texture coefficients to be manipu-

lated independently from the edge coefficients, which

are maintained in the higher levels of the stack. Bae et

al. [5] base a style transfer method on a two-scale Bi-

lateral stack. Similarly, Fattal et al. [18] propose detail

enhancement using a multi-scale Bilateral stack. Their

method combines the coefficients between multi-light

image collections to obtain an enhanced composite im-

age.

These methods that we mention here all seek a

photorealistic look, either through detail and contrast

enhancement or manipulating muti-scale features to

match a target image. We extend this body of research

to include non-photorealistic image stylization by us-

ing the Laplacian pyramid to add details that wouldn’t

necessarily exist in natural images.



Augmenting Photographs with Textures Using the Laplacian Pyramid 3

Example-based texture synthesis. Our texture augmen-

tation system requires, as input, a texture that has

been synthesized to the dimensions of the input im-

age. We employ non-parametric texture synthesis to

this end. Non-parametric texture synthesis can be cate-

gorized into pixel-based [3,15,41], patch-based [14,29],

or optimization-based [26,42] methods. The research in

this field is extensive and we refer the reader to Wei

et al.’s [40] comprehensive survey for detailed introduc-

tions to traditional techniques.

At the heart of all non-parametric methods is

a nearest-neighbour search algorithm that selects

the next pixel or patch in the synthesis process.

Ashikhmin’s coherence search [3] has been influential

both in texture synthesis and in the Patchmatch [6]

nearest-neighbour-field algorithm.

Texture transfer. Texture transfer uses a target image

to guide texture synthesis. The output image is con-

structed from the texture exemplar but retains the

large-scale configuration of the target. Efros and Free-

man [14] augment their patch-based method to include

luminance features and coerce a synthesized texture to

appear like a target image. Related to our work, Lee

et al. [28] synthesize oriented textures by adding gradi-

ent information to their neighbourhood similarity met-

ric. Hertzmann et al. [22] frame texture transfer as a

mapping between two sets of image pairs. An exam-

ple pair represents a before-and-after transformation of

an image. This transformation is learned and applied

to an input image so that it appears to have under-

gone the same transformation. Okura et al. [30] em-

ploy a similar strategy to hallucinate scene changes in

outdoor photography: observing that texture transfer

can erroneously destroy image structure, they propose a

method that shifts between colour transfer [37] and tex-

ture transfer to optimally represent the transformation.

Fǐser et al. [19] build upon optimization-based texture

synthesis [26,42] to transfer texture from an example

image to video using a series of guidance channels.

Other researchers have estimated 3D depth and sur-

face orientation to drastically change the appearance

of object surfaces in images. Fang et al. [17] induce

foreshortening effects by warping texture patches to

follow the surface orientation of an object. Khan et

al. [25] extend beyond texture transfer, in editing ma-

terial appearance, by allowing specularity and trans-

parency editing.

Recently, advances to style transfer have been made

possible through the use of convolutional neural net-

works [20,24]. These methods depart from the typical

low-level features that are used in texture transfer and

learn high-level semantic features that can represent

more complex transformations.

Our work employs texture synthesis to generate im-

age content, but has different objectives from previous

work in texture transfer. We do not intend to synthe-

size a new image, but rather to enhance an existing one

using fine-scale features that are extracted from texture

examples.

Image Enhancement. Our system augments images

with high frequency details and, as such, also contains

similarities with super-resolution [13,24,34] and other

forms of image enhancement [23]. However, in contrast

to these methods, we seek a stylized look, as opposed to

photorealism, and our output image is the same resolu-

tion as the input. Recent image enhancement methods

center around convolutional neural networks (CNN),

such that a low-resolution or corrupted image is passed

through a transformation network to produce a high-

resolution or high-quality output. Dong et al. [13] train

a CNN using a per-pixel loss function to perform super-

resolution. Other researchers have turned to perceptual

loss functions that, while achieving lower PSNR scores

than per-pixel loss, relate better to human perception.

Johnson et al. [24] use feature loss extracted from the

activation layers of a pre-trained classification network.

Sajjadi et al. [34] add texture loss, computed through

the Gram matrix [20] of a classification network, com-

bined with adversarial training [21]. Ignatov et al. [23]

use similar techniques – while training on mobile-DSLR

photograph pairs – to transform low quality inputs into

higher-quality outputs.

3 Enhancing images with texture exemplars

Figure 3 illustrates the pipeline of our system. The

pipeline contains two phases: a texture synthesis phase,

where we generate texture content, and a texture aug-

mentation phase, where fine-scale features of this tex-

ture are merged with the input image. The merging

is done by computing the Laplacian pyramid of both

the image and the texture, and using the smooth maxi-

mum [11] function to combine individual Laplacian co-

efficients; we reconstruct the final image from the re-

sulting combined pyramid. Details are given in the fol-

lowing subsections.

3.1 Texture synthesis

Our texture augmentation system requires two inputs:

an input image and a texture image. In this section

we describe our method for synthesizing the texture
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Fig. 3 The pipeline of our texture augmentation system.

image, a patch-based system in the tradition of Image

Quilting [14]. We first describe our basic method (Sec-

tion 3.1.1) and then discuss extending it to include a

guidance channel (Section 3.1.2). The guide image will

control the orientation of texture structures in the out-

put.

However, our pyramid-based texture augmentation

method (Section 3.2) does not depend on any particu-

lar texture synthesis method. We can use any synthesis

method [19,43] where local feature orientation can be

controlled, or even just resort to static textures.

3.1.1 Patch-based texture synthesis

The original Image Quilting algorithm places texture

patches on a regular grid. Unfortunately, the repeat-

ing grid pattern can make any imperfections in the

synthesized texture easily noticeable. Using irregular

texture patches [27] is one strategy to hide these im-

perfections. By avoiding predictable patch placements,

poorly matched seams can go unnoticed for many near-

stochastic textures. We divide the output image plane

into irregular patches by applying Simple Linear Itera-

tive Clustering (SLIC) [1] to the input image. Besides

providing an irregular tiling, SLIC also aligns patch

boundaries with image edges; this alignment sometimes

conceals poorly matched seams in the synthesized tex-

ture, since they will be hidden by the image edges in

the final integrated image.

We make one addition to the standard SLIC algo-

rithm. Since super-pixels in flat featureless image re-

gions tend to have regular shapes, we augment SLIC’s

distance metric to include an additional term that uses

color information from an outside guidance image. The

distance metric then becomes:

D = λdguide + (1− λ)dlab +
m

S
dxy, (1)

where dguide is the L2 norm between pixels and their

cluster centres in the guide. The parameter λ controls

the influence of the guide image. Typically, we use

λ = 0.2, a value small enough that its effect is only

felt when dlab is low. Figure 4 shows the result of our

super-pixel segmentation with and without the use of a

guide image; here, the guide image is a sample of Perlin

noise.

Fig. 4 SLIC patches. Left: original distance metric; right:
our distance metric.

Our patch search method is inspired both by

Ashikhmin’s pixel-based coherence search [3] and by

the random search method used in PatchMatch [6].

Given a patch that we are about to synthesize, we con-

sider all adjacent patches in the previously determined

texture. Extending these patches into the current lo-

cation gives us an initial set of candidates which are

then evaluated with the sum-of-squared-differences on

the patch overlap. Choosing the best match from the

coherence search, we then proceed to the random sam-

pling method from PatchMatch attempting to improve

upon this initial selection.

The final step is to find an optimal seam through

the region where adjacent patches overlap. We de-

fine error(u) as the squared difference between the

previously determined texture and the current tex-

ture patch at location u. A min-cut is then obtained

using Dijkstra’s algorithm on the pixel graph using

max(error(u), error(v)) as the edge weights between

pixels u and v.
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3.1.2 Oriented texture synthesis

We intend to synthesize textures so that local struc-

tures are oriented similarly to corresponding locations

in the input image. Local image orientation can be

described through the image structure tensor [7]. Its

eigendecomposition gives eigenvalues λ1 � λ2 and their

corresponding eigenvectors e1 and e2. The eigenvector

e1 points in the direction of the image gradient. How-

ever, the structure tensor field can be noisy and will

benefit from smoothing. Criminisi et al. [12] present a

method for edge-aware color smoothing in images us-

ing a geodesic-distance transform. We would like our

orientation fields to possess edge-aware smoothness: to

wit, orientation should change gradually within sim-

ilar regions, but can change drastically across edges.

Criminisi et al.’s method can naturally be adapted to

our purposes, averaging tensors rather than colors. This

smoothing process also allows tensors with arbitrary

orientation to receive influence from nearby structures.

In computing the geodesic-distance transform we

define the distance between any two tensors as:

D = wxydxy + wlabdlab + wordor, (2)

where dxy and dlab are the spatial and color-space L2

norm and dor is tensor orientation distance. Each com-

ponent is weighted as wxy, wlab, and wor, respectively.

Following Akl et al. [2] we compute dor, between tensors

M1 and M2 as:

dor(M1,M2) = |sin(θ1 − θ2)| ×min(C1, C2), (3)

using θ = tan−1(e1y/e1x) to determine tensor orienta-

tion. The orientation coherence is computed as:

C =
λ1 − λ2

λ1 + λ2 +K
, (4)

where K is a constant that both prevents division by

zero and lowers the coherence measure of weak struc-

tures. We set K to 0.0015 in our examples. Distance

terms dlab and dlab are normalized by dividing them by

the 95th percentile of observed distance values in the

appropriate domain. Finally, in all of our results we set

the weight terms wxy, wlab, and wor to 1, 3, and 5,

respectively.

We produce an orientation guide for both the input

image and the texture example. At each pixel location

we extract a vector indicating the local image orien-

tation, using the eigendecomposition of the smoothed

structure tensor. We rotate texture patches so as to

align the orientations of the auxiliary texture and the

input image. A simple update incorporates orientation

into the method presented in Section 3.1.1. We now ro-

tate each texture patch so that orientations are aligned

between the patch centre and a corresponding position

in the underlying image. This rotation is done before

calculating the overlap error on a given candidate. A

sample result from this process is shown in Figure 5.

Fig. 5 Oriented texture synthesis. Left to right: input image,
original structure tensor, smooth structure tensor, synthe-
sized texture. Orientation fields are visualized using LIC [10].

3.2 Pyramid-based texture augmentation

Having now synthesized a texture, we combine it with

the input image using the Laplacian pyramid. We give

details on our Laplacian pyramid calculations in Sec-

tion 3.2.2. However, because the resulting pyramid may

produce out-of-scale intensity values, we first compress

extreme luminance values in a pre-processing step in

order to minimize saturation in highlight and shadow

regions; this is described first in Section 3.2.1.

3.2.1 Local dynamic range compression

By altering the Laplacian coefficients in the image pyra-

mid, pixel values may extend beyond the legal [0, 1] in-

tensity value interval. A simple strategy to fix this prob-

lem is to clamp invalid pixel values. However, this will
only allow us to represent part of the new texture since

many coefficients will be thrown away. Rescaling the

original image is not an appealing option either since

that will produce a flat, lower-contrast result. We intend

to maintain the original dynamic range of the input im-

age as much as possible. We use the method of Pérez

et al. [32] for local dynamic range compression in or-

der to selectively rescale highlight and shadow regions.

By limiting the dynamic range compression method to

selected regions, we preserve most of the image while

creating more space in the high and low end of the in-

tensity range. This process involves two steps: (1) We

present our automatic method for selecting image re-

gions to be compressed. (2) We apply Pérez et al.’s lo-

cal dynamic range compression method to each selected

region.

Step 1. Region Selection: The following presentation

treats only the high end of the intensity range, but the

low end of the intensity range is symmetric.
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We use hysteresis thresholding to select bright im-

age regions for dynamic range compression. Given a

user-defined pair of threshold values, thigh and tlow, we

select contiguous regions in the image where image in-

tensity values exceed tlow while also containing pixels

which exceed thigh. The intent of using two threshold

values is twofold: the upper threshold marks the true

highlights that we want to compress, while the lower

threshold marks a wider region around the selected

highlight within which we interpolate the image inten-

sity. In our examples we set thigh to 0.96 and tlow to

0.82 for bright regions; in dark regions, tlow = 0.04 and

thigh = 0.18.

One might alternately imagine choosing the larger

region spatially, using a mechanism such as morpholog-

ical dilation. However, where bright image regions exist

adjacent to strong step edges, we would like to prevent

the larger region from crossing these boundaries. Our

hysteresis thresholding method accomplishes this and

avoids destructively editing the profiles of important

edges through dynamic range compression.

Working in the luminosity channel of CIELAB color

space, we first threshold the input image at tlow. Next,

we obtain the connected components of the result-

ing binary image. These regions will be candidates for

dynamic range compression provided that their pixel

count exceeds a user-specified amount ε; we used ε = 20

for 1.5 megapixel images in all examples. Next, we dis-

card any candidate regions that lack true highlights,

i.e., those that do not contain pixels with intensity

above thigh. Figure 6 provides a visualization of this

selection process in the top row. Pixels marked at the

lower threshold are shown in yellow and pixels marked

at the upper threshold are shown in red. In the bottom

row of this figure we show a texture augmented im-

age with (left) and without (right) local dynamic range

compression. Notice how the input texture is better rep-

resented against bright background in the right image.

Step 2. Dynamic Range Compression: We apply dy-

namic range compression to the selected regions. Fol-

lowing Pérez et al., we use the following remapping

function to modify the original image gradient and

guide Poisson blending:

G′ = sign(G)× αβ × |G|1−β , (5)

where G is the gradient vector field of the input image.

We set α to 0.2 times the average gradient magnitude

within the selected region, and β to 0.2, following Pérez

et al.

Fig. 6 Region selection is illustrated in the top row. Top
left: original image; top right: upper threshold shown in red,
lower threshold shown in yellow. The yellow regions indicate
the final selections provided that they enclose red pixels. The
effect of compressing extreme values is shown in the bot-
tom row. Bottom left: without compression; bottom right:
extremes compressed. Both results set α = 0.1.

3.2.2 Laplacian pyramid coefficient mixing

Given two Laplacian pyramids LI and LT , derived from

an input and texture image, we compute a result pyra-

mid LR that combines coefficients from both inputs.

A simple strategy is to compare the absolute value be-

tween coefficients from both inputs and choose the max-

imum while retaining its sign. This is similar to the

strategy used by Pérez et al. [32] where they mix image

gradients to blend images. However, this “choose the

maximum” rule can cause image edges to become hid-

den amongst newly added textures. Instead, we suggest

using the smooth maximum [11]. The smooth maximum

of input values u and v is computed as follows:

SM(u, v, k) = ln
(
exp(ku) + exp(kv)− 1

)1

k
, (6)

where k is a parameter controlling the degree of smooth-

ness in the maximum function. For large values of k,

Equation 6 degrades to an ordinary maximum function.

Smaller values of k, in contrast, yield an output value

above the larger of u and v. However, this amplification

of the output value is not distributed equally. Instead,

where u and v are dissimilar, their smooth maximum

will approach the maximum. Alternately, where u and

v are equal the output will receive the largest amplifi-

cation. Hence, we can intuitively visualize a maximum

function that rounds off the corner where u and v ap-

proach the same value. Note that we also subtract a one

from the sum of the exponentiated inputs. This adjust-
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ment ensures that when both Laplacian coefficients are

zero then the output will also be zero.

Using Equation 6, we compute each output coeffi-

cient LRl (x, y) at level l as follows:

LRl (x, y) = Ψ × SM
(
|LIl (x, y)|, wl|LTl (x, y)|, k

)
, (7)

where the variable Ψ can be 1 or -1 and refers to the

sign of the coefficient with the larger absolute value.

We chose a value of k designed to amplify the output

in regions where texture and input images have simi-

lar Laplacian coefficient magnitudes, i.e., where auxil-

iary texture and image details align. A slight contrast

enhancement in these regions allow the original image

structure to remain salient against a baseline with in-

creased texture activity. Experimentally, we set k to 25

assuming pixel values in the interval [0, 1]. In Figure 7

we can see that this parameter setting, observed in the

second image from the right, gives a slight boost to the

Laplacian coefficients; effectively increasing contrast.

Fig. 7 Varying the parameter k in Equation 7. From left to
right: original image, k = 500, k = 25, and k = 1. All results
set α = 0.15.

In addition, rather than letting the example texture

completely dictate the look of the resulting texturized

image, we control the texture’s influence using param-

eter wl:

wl =
α

φl × 2l
, (8)

where α is a user-defined term that controls the inten-

sity of the texture coefficients and φl is a normaliza-

tion term that adjusts for the contrast of the texture

exemplar. To control for outliers, we set φl to the 95th

percentile of the Laplacian coefficients observed at level

l in the texture image. Further, since we intend texture

to be incorporated mostly into the finer-scale pyramid

levels, we scale down the texture coefficients by 2l: thus,

for any texture, only the fine-scale features are retained.

The parameter α in Equation 8 provides a pre-

dictable means to control the intensity of the added

textures. Figure 8 illustrates different texturizing effects

at α = 0.04, 0.1, and 0.2. The lowest setting introduces

texture so subtly that it is barely perceptible. At the

highest setting, the added texture is emerging against

the high contrast image details at the front of the car.

This has probably pushed it too far but the preferred

outcome is, of course, up to the user.

Fig. 8 Varying the texture intensity parameter α (Equa-
tion 8). Top left: input image; top right α = 0.04; bottom
left: α = 0.1; bottom right: α = 0.2.

3.3 Masking effects

In many cases, the results can be more interesting if

we allow the user to control the texture augmentation.

A typical use case involves a digital artist selecting tar-

geted regions, then adding texture independently to dif-

ferent image locations: for example, one texture could

be applied to the foreground while another is applied

to the background. We use the GrabCut [33] semi-

automated segmentation method to define a collection

of masked regions on our input images. Manually seg-

menting an image takes roughly 30–60 seconds.

Figure 9 shows an example where we add texture

to targeted regions of an image. Adding textures to

part of an image can be used as a general technique

to emphasize a particular subject. The image of the

parrot contains two added textures, one in the fore-

ground and one in the background. Using two textures

in the manner often helps to differentiate objects. We

can also vary the texture intensity for each region in-

dependently. The background texture is applied more

subtly to the forested area while the foreground texture

is more obvious on the parrot.

Another use of the structure tensor that was intro-

duced in Section 3.1.2 is to use it to build coherence

maps. Orientation coherence (Equation 4) is measured

by the relative strength of the tensor’s dominant eigen-

value. We smooth the output of Equation 4 with a cross-

bilateral filter, guided by the original input image. This

process provides us a good predictor for how well direc-

tional texture synthesis will represent the underlying

image content and we can use this information to blend

isotropic and anisotropic textures into image regions

where coherence is low or high, respectively. Isotropic

textures are synthesized without rotating patches and

anisotropic textures are synthesized using patch rota-
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Fig. 9 Result with a user defined mask. Above: input image
(texture and mask shown in insets); below: result using α =
0.1 in the background and α = 0.2 on the parrot.

tions. The coherence map contains entries in the in-

terval m = [0, 1] which are used to obtain a blended

texture Laplacian pyramid where individual coefficients

are calculated as:

LTl (x, y) = m(x, y)LT1
l (x, y)+(1−m(x, y))LT2

l (x, y),(9)

where LT1
l and LT2

l are Laplacian pyramids for the

anisotropic and isotropic texture images, respectively.

This blended Laplacian pyramid will be used as the

input for coefficient mixing in Equation 7.

Figure 10 shows the result of blending two tree-bark

textures – showing isotropic and anisotropic qualities –

in the top and bottom texture samples, respectively. In

the flat regions of the skin, an isotropic bark texture

dominates. Towards the jawline, the texture smoothly

transitions to an anisotropic texture following the con-

tours of the face. Texture in the jewellery is also mostly

taken from the anisotropic source where it reinforces

both linear and circular structures.

Fig. 10 Results using orientation coherence for a mask. Tex-
tures and masks are shown at top left. The isotropic texture
(top example) uses α = 0.1 and the anisotropic texture (bot-
tom example) uses α = 0.2.

4 Results and Discussion

By incorporating high-frequency stochastic textures

into an image, we can increase the visual richness of

otherwise flat image regions. The appearance of film

grain in classic photography once provided similar char-

acteristics. Other, highly stylized effects are created by

coercing textures to follow an orientation field. For ex-

ample, painterly effects can be produced, where tex-

tures follow edge and texture orientations.

Fig. 11 Adding film grain to an image. Left: b&w film photo-
graph; right: blending a scanned 35mm negative with a digital
image using our method using α = 0.15.

We present some results from our method in Fig-

ures 11 and 12. These images use a single texture,

applied uniformly across the image plane. Figure 11

adds film grain to a greyscale digital image while Fig-
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ure 12 incorporates textures with unambiguous orien-

tation. On casual inspection, the augmented images do

not appear drastically different from the input images.

This is due to three reasons. First, our method changes

Laplacian coefficients only in the luminosity channel.

The color palette of the input image is thus retained.

Second, our method maintains the dominant edges from

the input. Finally, because our method reduces the ef-

fect of the texture coefficients at higher pyramid levels,

the method maintains the large-scale tonal variation of

the input.

All of the above characteristics are deliberate. Tex-

ture should be added where it is not already present;

where there is significant texture or edges in the input

image, the effect should be minimal. In this sense, our

texture augmentation method is purely additive: tex-

tures can be added to an image but not removed. In

flat or lightly textured regions, the smooth maximum

function from Equation 6 favours Laplacian coefficients

from the example texture. In highly textured regions,

or at strong edges, the Laplacian coefficients from the

input image are favoured. Observe the man’s face in

Figure 12. The synthesized texture follows the contours

in his face and is seen clearly. Yet, prominent features,

such as the eyes and facial creases, are still just as vis-

ible as they were in the original.

In the second image, we can clearly see the effect of

the directional texture synthesis. The texture seems to

flow around the berries and leaves, producing an illusion

of movement. Many NPR painting styles have sought

a similar goal in emulating highly visible and energetic

brushwork, often mentioning Vincent van Gogh as in-

spiration [16,39].

4.1 Comparison with related work

Figure 13 shows a comparison between our method and

image blending modes that are found in commercial

software. In order to be consistent with our method,

we constrain blending to the luminosity channel. The

alpha-blended image appears flat, since intensity values

are averaged between the two inputs. The multiply and

overlay blends, as found in Adobe® Photoshop®, are

often used for manual texture blending. As we can see,

these modes also produce color distortions which may

be unintended. In contrast, our method maintains color

and edges. The type of texture shown here is difficult to

synthesize, owing to its non-stationary features; images

such as this are usually manually created. We used our

Laplacian pyramid method to add the static texture

to the photograph; the result is far superior to image

blending, and could be used directly in some cases. Still,

there is a visual separation between the photograph and

the added texture, with extended texture features cross-

ing over image edges and signaling the viewer that the

texture is a different layer. Next consider the last result,

combining the photograph with a texture synthesized

from a small sample of the exemplar. The texture syn-

thesis method is not able to reproduce the large-scale

structures that help characterize this texture. However,

the synthetic texture better integrates with the pho-

tograph: texture features no longer cross image edges,

since they are oriented parallel with them. This results

in a more unified appearance between the added texture

and the original content.

Figure 14 gives a comparison between our texture

augmentation method and Semmo et al.’s oil painting

filter [35]. Although their main contribution is the im-

age abstraction effect, we share their goal of adding

texture to the surface of an image. Their textures are

created by applying lighting to a heightfield derived

from image orientation, thus producing a painterly ef-

fect. Our method uses example-based textures and is

more versatile; also, our method more thoroughly in-

tegrates the texture into the input photograph. In our

example at the bottom, small-scale details in the fore-

ground are better preserved. While we apply textures to

photographic images, a possible future direction could

use our approach in conjunction with a more severe

stylization of the input photograph.

The Textureshop system of Fang et al. [17] goes fur-

ther than we do in attempting to realistically apply

texture to 3D object surfaces. In our work, we focus

on automatically aligning textures with feature orien-

tations. This is only a minimal concern in Textureshop.

They instead allow a user to manually indicate texture

orientation. Even then, orientation is on a much larger

scale than we have locally defined it. The bulk of their

efforts are, instead, focused on distorting the example

texture to indicate the correct perspective of the target

object. In the example, shown at the top of Figure 15,

it appears that the lion sculpture is composed of the

texture substance. In our approach, which can be seen

below, it appears that the texture has been etched into

the surface of the stone.

4.2 Limitations

Extending our method to operate on three color chan-

nels would not be possible. The smooth maximum func-

tion operates independently at each image location,

level by level, in the Laplacian pyramid. This process

is effective for luminosity changes, allowing new tex-

ture coefficients to build upon the lower pyramid levels.

However, by extending to all color channels the results
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Fig. 12 Results with a single texture. Both examples set α = 0.1.

Fig. 13 Comparison with image blending. Top: input image
(left) and static texture (right); middle: image blending con-
strained to the luminosity channel, alpha-blend (left), Photo-
shop’s overlay-blend (center) and multiply-blend (right); bot-
tom: our result using static texture (left), our result using
texture synthesis (right). Bottom examples set α = 0.2.

would be unpredictable, both within a channel and es-

pecially across channels.

Our method is designed to transfer high-frequency

details from a texture example into an input image.

However, many textures are characterized by lower-

frequency variation. This class of texture presents a

Fig. 14 Comparison with Semmo et al.’s oil painting fil-
ter [35]. Above: Semmo et al.; below: ours using α = 0.2.
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Fig. 15 Comparison with Fang et al.’s Textureshop [17]
method. Above: Fang et al.; below: ours using α = 0.15.

problem for our method. For example, picture a large-

scale checkerboard texture; only the Laplacian coeffi-

cients representing region edges will be transferred to

the input image. As such, our method is limited to the

high-frequency textures that we have used to demon-

strate our method in this paper.

5 Conclusion

We presented two distinct image processing techniques

and combined them to stylize photographs by adding

textures. The first technique uses the Laplacian pyra-

mid to mix coefficients between an input image and a

synthesized texture. Using our method, we can produce

image stylization effects that augment images with new

textures while preserving strong edges, color, and orig-

inal textures. Additionally, we draw on previous work

in patch-based texture synthesis and develop a method

for synthesizing textures to follow an orientation field.

We use a smooth maximum function to introduce

new texture coefficients into the Laplacian pyramid of

an image. This function differs from the ordinary max-

imum in that it amplifies similar values. This ampli-

fication helps to preserve edges against a background

of newly added texture. Our method builds upon the

original large-scale features of the input image by re-

placing coefficients in the high-frequency bands of the

Laplacian pyramid. Adding texture in this fashion en-

hances the illusion that added textures naturally be-

long to the original image. Conversely, previous meth-

ods have sought to replace image content with new tex-

tures entirely.

We used SLIC-based patches as atomic units of tex-

ture, benefitting the synthesis process in two ways.

First, they place seam imperfections in unpredictable

locations; the irregular placements are less apparent

than is a regular pattern. Second, used for combining

photographs and textures, the SLIC patches tend to

align patch boundaries with image edges. Since Lapla-

cian coefficients from the texture are less likely to be

transferred to the output in these locations, artifacts at

these seams are less visible in the result.

Future Work. While we have designed a method to

transfer characteristics from example textures into an

image, we see several avenues to extend our work. Draw-

ing inspiration from Textureshop [17], we would like to

enhance the realism of our added textures by consider-

ing 3D aspects. Using photometric methods from com-

puter vision we can estimate the surface orientation of

objects in the input image. We could use this informa-

tion to adjust the magnitude and spatial frequency of

texture features to create perspective effects. We also

suggest that demands on the user could be minimized

with adaptations to the GrabCut semi-automatic seg-

mentation system. We believe that augmenting color

information with texture descriptors could lead to more

accurate results in our application and reduce the need

for iterative user involvement. This would free the user

for higher-level tasks such as experimenting with dif-

ferent textures that can be used to enhance digital art-

works.
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