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Figure 1: Sample tree models synthesized using our method.

Abstract
We propose guiding vectors to augment graph-based tree synthesis, in which trees are collections of least-cost
paths in a graph. Each node has an associated guiding vector; edges parallel to the guiding vector are cheap, but
edges are more expensive when their orientation differs from the guiding vector. We further propose an incremental
method for assigning guiding vectors over the graph, in which a node’s guiding vector is an incremental rotation
of that of its parent. We present a complete procedural system for tree modeling; our use of guiding vectors enables
the graph-based method to produce high-quality tree models resembling a variety of real-world tree species.

Categories and Subject Descriptors (according to ACM CCS): I.6.5 [Computer Graphics]: Model Development—
Modeling methodologies

1. Introduction

Modeling natural phenomena such as plants, mountains, and
oceans has long been a topic of great interest for computer
graphics. Trees have been a particular source of fascination,
with numerous automatic and semi-automatic methods for
tree modeling proposed over more than thirty years. Syn-
thetic tree models have become extremely realistic.

Despite the attention paid to the problem of tree model-
ing, some problems remain. For automated methods, the ob-
jectives of speed and controllability are elusive. Data-driven
and manual approaches have their own drawbacks: it is in-
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convenient to obtain laser scans or photographs of a desired
tree, and human intervention can be costly.

In this paper, we present an automated tree modeling al-
gorithm. Our goal here is to model the tree’s architecture –
the spatial arrangement of trunk and branches – and not other
details such as leaves and bark. Our algorithm possesses sev-
eral desirable qualities. It is moderately fast, requiring only
a few seconds to generate a full tree (27k branch segments).
It is automatic, requiring no user guidance or external data
such as point cloud or photographic representations of mea-
sured trees; it is controlled by a collection of parameters,
many of which can be left at default settings. Finally, the
method is versatile, capable of generating a wide variety of
trees; some examples appear in Figure 1.

Our synthetic trees are collections of least-cost paths
through a weighted graph, where an irregular graph provides
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a discrete representation of the space within which the tree
will reside. Least-cost paths have been used for trees be-
fore, but without the ability to control the intermediate-scale
shape of the trees; the synthetic branches do not curve in a
way resembling real tree branches.

This paper introduces the concept of guiding vectors for
weighted graphs: each node has an associated vector, and
the weight of each outgoing edge will be set such that trav-
elling along the vector is inexpensive, and cost increases as
the direction of travel deviates from the vector’s direction.
Thus, least-cost paths will follow the vectors, allowing us to
specify the medium-scale flow of the branches while retain-
ing the advantages of single-source shortest paths, such as
guarantees of no loops or self-intersections.

The paper makes two main contributions:

• It proposes guiding vectors for setting edge weights. Prior
methods (particle tracing, self-organizing trees, graph-
based trees) did not have an effective way to specify lo-
cal directions; architectural control was available only
coarsely, through attraction point placement, through end-
point placement, or through a density map. Guiding vec-
tors provide local control over branch orientation.

• It suggests a mechanism for assigning guiding vectors.
The guiding vectors can be set according to a global vec-
tor field. However, we have found it worthwhile to merge
the vector field creation and the tree creation processes.
We propose to determine the guiding vectors incremen-
tally as the shortest-paths algorithm progresses, comput-
ing a guiding vector for a newly visited node as a small ro-
tation of its parent’s guiding vector. This approach allows
us to specify intermediate-scale tree architecture with a
few simple rules.

We also present a complete graph-based tree modeling
system, with automatic graph construction and endpoint se-
lection. The remainder of the paper is devoted to describing
the algorithm and showing trees generated using the method.

2. Previous Work

Many methods have been proposed to synthesize tree struc-
tures. L-systems and later extensions are most notable: L-
systems are a grammar that generates strings, subsequently
interpreted as different branching structures and used for
modeling of plant growth and plant ecosystems [PJM94,
MP96, DHL∗98]. One issue with L-systems is the diffi-
culty of global control; it is a challenge to devise a sys-
tem of rules to obtain a particular effect. Prusinkiewicz
et.al [PJM94] proposed a synthetic topiary, where a user-
specified bounding shape restricts the plant growth. Benes
et al. [BSMM11] divide space into guide regions for branch
growth, and obtained a high-level depiction by editing the
guides. While spatial operations can provide top-down con-
trol over grammar-based methods, the need to write the pro-
duction rules can be daunting.

The geometric method of Weber et al. [WP95] repre-
sents trees as collections of narrow near-conical tubes. A tree
structure is generated from transformations of the segments;
a user adjusts meaningful parameters, such as branching an-
gles and segment lengths. Unfortunately, creating a new tree
is cumbersome, requiring adjustment of up to 80 parameters.

A broad trend in computer graphics is data-driven syn-
thesis, where models are created based on real-world mea-
surements such as images [RCSL03, NFD07, TZW∗07] or
laser scans of geometry [XGC07, BLM09, LYO∗10, AK14]
and the development of geometry over time [LFM∗13]. Such
methods can be extremely effective. However, they are of-
ten intended for reconstruction, not synthesis; obtaining new
types of trees is beyond their scope.

Laser scans create point clouds, and reconstruction meth-
ods can be based on least-cost paths through an inferred
graph, as in the method of Xu et al. [XGC07]. Bucksch et
al. [BLM09] approach the problem similarly, but use an oc-
tree to organize the point cloud data. Livny et al. [LYO∗10]
sought to reconstruct multiple overlapping trees simulta-
neously, applying a series of global optimizations based
biologically-derived heuristics. Laser scanning trees is dif-
ficult because of trees’ complex shapes and frequent occlu-
sions; Aiteanu et al. [AK14] addressed this with a method
that distinguishes between a densely sampled core and a
sparsely sampled outer region.

Graph-based methods can be used for tree synthesis as
well as tree reconstruction, procedurally generating a graph
rather than measuring one. Xu and Mould [XM12] con-
structed trees within a hierarchy of procedurally-created
graphs. Their method provided good global structure, but the
details of the branch shapes were unconvincing.

In an effort to create natural tree shapes with a biologi-
cally plausible process, Runions et al. [RLP07] devised the
space colonization algorithm. Attraction points signal the
availability of growth space; the tree extends towards nearby
attraction points, which are removed when the space is no
longer empty. The tree structure is formed gradually, de-
veloping from the root towards the attraction points. The
idea was exploited by Palubicki et al. [PHL∗09] for self-
organizing trees; the resulting shapes can be controlled by
constraining the space for tree growth and by properly dis-
tributing the initial attraction points. Stava et al. [SPK∗14]
proposed a method based on plant biology, and automati-
cally determine the parameters to reproduce an input tree
model. Wang et al. [WYZB14] start from a structure de-
fined by botanical meaningful parameters, and iteratively ap-
ply top-down optimizations to make the resulting tree struc-
ture match a given guide shape. This group of methods has
proven highly effective for tree modeling.

Full manual creation of trees is exhausting, but sketch-
based methods reduce the needed user effort. Ijiri et al.’s sys-
tem [IOI06] allows users to control L-systems with sketched
strokes. The TreeSketch system of Longay et al. [LRBP12]
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is highly sophisticated: users can interactively control tree
development by sketching, with branches generated using
the space colonization algorithm.

Sketching and data-driven approaches can be combined,
with sketches used to select tree elements from a database.
Okabe et al. [OOI06] convert 2D freehand sketches to 3D
branches under the assumption that branches maximize the
space around them; they add new branches using existing
branches as examples. Chen et al. [CNX∗08] infer a tree
template from user-supplied strokes, and the parameters of
the template guide the subsequent tree shape. Using a similar
idea, Wither et al. [WBCG09] combine user sketches of fo-
liage with botanical heuristics to determine branch connec-
tions and distribution. These methods are effective, but de-
pend heavily on user input; we aim at an automated method
with minimal user involvement.

3. Algorithm

3.1. Algorithm Breakdown

Our algorithm is composed of four steps. First, we populate
with nodes the volume where the tree will reside, and link
nearby nodes with directed edges. Second, we apply Dijk-
stra’s algorithm to find least-cost paths from the source to
all other nodes. We compute edge weights under lazy evalu-
ation: a node’s guiding vector is set when it is first opened,
as a rotation from its parent node’s vector, and undefined
edge weights are assigned based on the relationship between
the edge vector and the guiding vector. The branches tend to
follow the guiding vectors, since edges are cheapest along
the guiding vector direction. Third, we select endpoints in
the graph and determine the least-cost paths from the source
to these endpoints; the union of all such paths is a branch-
ing structure that will eventually form the tree. Finally, the
source is set to the set of paths so far and the second and third
steps are repeated, creating a hierarchical structure. Details
of each step are described in the following.

3.1.1. Graph initialization

We construct an irregular graph by distributing nodes in a re-
gion of space and connecting nearby nodes with edges. The
region is typically a square (in 2D) or cube, but other shapes
are possible. The nodes themselves take a Poisson disc distri-
bution, where the size of the disc dictates the branch feature
size and the minimum branch tip spacing. Nodes are linked
in a Yao-8 graph [Yao77], where the space surrounding each
node is divided into 8 sectors and the node connects to the
nearest node in each sector. Having a fixed number of out-
going edges per node, but an irregular spatial distribution of
nodes, lets us limit potential lattice artifacts while maintain-
ing predictable memory usage.

Each node has an associated data structure to store needed
per-node information: its ID; distance from the source; ID

of parent node; guiding vector; and outgoing edges. Guid-
ing vectors are unit vectors used to determine edge weights:
edge weights will be less for edges oriented along the guid-
ing vector, and more expensive as the directions diverge.

The root node has distance zero, and has a vertical guiding
vector. It is typically placed at the bottom centre of the graph.
All other nodes have distance infinity and undefined guiding
vectors; their vectors will be set in the next step.

The use of a single, irregular graph both allows us to rea-
son about the tree in a unified framework and prevents lattice
artifacts. One might imagine that a regular cubic or tetrahe-
dral lattice would be superior: graph connectivity would not
need to be stored, reducing memory requirements. However,
the resulting lattice artifacts are apparent even if the node
positions are jittered, and we have opted for the improved
visual quality from the irregular graph.

3.1.2. Guiding vector and edge weight definition

We next compute shortest paths from the source to every
other node in the tree. The source has known cost and known
guiding vectors; the costs and guiding vectors of all other
nodes are unknown. Note that although the source is a single
root node in the first iteration, later iterations use a source
which is the full set of paths so far, thus causing branches to
be hierarchically added to the emerging tree structure.

Lazy evaluation of guiding vectors and outgoing edge
costs is done in concert with the path planning; a node’s
guiding vectors is found by rotating its parent node’s guid-
ing vector. The individual branch shapes thus follow a well-
defined trajectory while maintaining an overall organization
of the global tree structure.

Our implementation uses Dijkstra’s algorithm, which
maintains a frontier of nodes with provisional costs and a
set of nodes with finalized costs. Each step moves a node
from the frontier to the finalized set. In our method, the event
of finalizing a node’s cost also fixes its guiding vector: the
guiding vector is determined by rotating its parent’s guid-
ing vector. Typically, the rotation axis is the cross product
of the up vector and the parent’s guiding vector; the rotation
angle is determined algorithmically, using specific rules or
user-assigned parameters. A constant rotation angle causes
branches to curve upwards or downwards in a predictable
trajectory. Other strategies are possible, as detailed below.

Once the newly opened node has a guiding vector, the
weights of outgoing edges are set. The weight of an edge
E is dE(1−~eE ·~vE), where dE is the length of the edge, ~eE
is a unit vector along the edge, and~vE is the guiding vector.
Note that both ~e and ~v are unit vectors, so that the weight
has a minimum when the directions coincide and a maxi-
mum when the directions are opposite. Other functions are
of course possible, but we have found this equation to be
effective. Variations arise from altering the endpoint place-
ment and the rules governing the guiding vectors.
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In the absence of obstacles, shortest-path calculations tend
to produce paths heading approximately along a straight line
linking the origin and destination. Our use of guiding vec-
tors, however, can produce natural-seeming curving paths.
Figure 2 shows a comparison with and without guiding vec-
tors. The crooked path on the left follows the shortest path
through the graph. On the right, the guiding vectors push
the shortest path upwards at first; only gradually does the
path change course. Notice that the path is not a stream-
line through the vector field: it is still computed according to
the shortest-path algorithm, using edge weights that were set
based on guiding vector direction. Also note that the guiding
vectors are not a field: they are stored on a per-node basis
and never evaluated at intermediate locations.

Figure 2: Left: a path from graph without guiding vectors;
right: a path from graph with guiding vectors.

3.1.3. Branch construction

Next we extend the tree with a new set of branches. A subset
of graph nodes are selected as endpoints; the least-cost paths
from the source to these points will be new branches aug-
menting the emerging tree. Various strategies for endpoint
selection are possible. Perhaps the simplest is to randomly
select the endpoints from a user-specified volume; we usu-
ally employ this approach for the first level in our hierar-
chy. For later levels, a strategy that is aware of the current
tree shape is called for; we suggest choosing endpoints from
among the nodes that are k hops from the source in the previ-
ous iteration, thus causing the tree to extend outward. More
details appear below.

3.1.4. Hierarchical structure

To complete the tree, we repeat the previous two steps a few
times, typically 4-5 iterations in total. Nodes that are not part
of the structure are reinitialized to have unknown cost and
unknown guiding vectors; edge weights also become un-
defined. Then, the nodes in the structure are set as source
nodes, i.e., added to the frontier with distance zero; option-
ally, the guiding vectors for the source nodes are changed;
and the shortest-paths algorithm is used to propagate guid-
ing vectors and costs into the remainder of the graph. A
new set of endpoints is selected, the paths to these endpoints
recorded, and these paths added to the structure, whereupon
the process repeats again.

We illustrate the iterative tree construction in 2D in Fig-
ure 3 and in 3D in Figure 4. The background of Figure 3
shows the guiding vector directions; the coherence arising
from the vector propagation method is apparent.

Typical trees have a central trunk and a collection of pri-
mary branches from which secondary, tertiary, and smaller
branches spring. For this shape, we dedicate the first iteration
to the trunk, with a single endpoint; more shrub-like trees
can instead use more endpoints. Endpoint placement in the
second iteration then becomes critical in defining the over-
all shape of the tree. Our practice has been to use a Poisson
disc distribution within a bounding volume approximating
the tree crown. Later iterations will fill out the tree from this
basic shape. We can see the process in Figure 10, in which
the bounding volumes are shown.

Figure 3: Iterative shortest paths and guiding vector assign-
ment. Left: first iteration; right: second iteration.

Figure 4: Four iterations of tree construction.

3.2. Elements of the Algorithm

3.2.1. Guiding vector transformation

The guiding vector for a newly opened node is an incremen-
tal rotation of its parent’s: the vector is rotated about an axis
perpendicular to both the up direction and the traversed edge.
A typical example (α = 4o) is shown in Figure 5, upper left.
With constant rotation angle α, we are limited in the types
of tree we can create.
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Making α a function of distance along the branch gives us
more flexibility. Even a piecewise constant function can pro-
duce worthwhile results. Discretizing distance into the count
of edges traversed (number of hops, h), we can write

α(h) =

{
α1, if h ≤ h0;
α2, otherwise.

(1)

By varying the angles α1 and α2 and the switchover point
h0, we can obtain different types of trees. Figure 5 (up-
per right) shows an example with α1 = 6o, α2 = −6o, and
h0 = 20; the branches bend outwards and downwards for
some distance, then begin to bend upwards. This is a simple
heuristic used to create plausible tree shapes. Unless other-
wise stated, we use Equation 1 for all remaining trees.

The rotation parameters can be changed for later itera-
tions; an example is shown in the lower row of Figure 5.
The upper row shows the initial tree structure, and for both
trees, later iterations use α1 = 30o, α2 = 0 and h0 = 1. A
large α1 produces a noticeable fork between a branch and
its children, while α2 = 0 ensures that the child branches are
generally straight.

Figure 5: Left: constant rotation angle; right: rotation angle
reverses after some distance. Above: first iteration; below:
after four iterations.

Some additional variations on the rotation settings are
shown in Figure 6. These examples differ solely on the rota-
tion policy in the second iteration; the first iteration is used
only to create a trunk (so α = 0) and the later iterations pro-
duce straight branches (α1 = 30o, α2 = 0 and h0 = 1).

The partial trees after the second iteration are shown in
the top row of Figure 6. Tree (a) has α = 10o, produc-
ing branches that strongly curve downward. Tree (b) uses
α1 = 60o, α2 = 0 and h0 = 1: its branches emerge at a fixed
upwards angle from the trunk and are fairly straight. Tree (c)
uses α1 = R, α2 = 0 and h0 = 1, where R denotes a random
angle between 30 and 120 degrees; i.e., each node on the
trunk has a different random direction. The branches point
in different directions, but are fairly straight. Finally, tree (d)
uses α1 = 15o, α2 =−5o and h0 = 5.

Figure 6: Trees generated using different rotation settings.
Above: results after two iterations; below: results after five
iterations.

Guiding vectors can also be set using a rule that incor-
porates global information. For example, we might set the
rotation angle based on the angle to the central axis:

α = θ×
√

β/π (2)

where β is the angle, in radians, between the node’s position
vector and the up vector, with the root at the origin; θ is the
parameter controlling the amount of rotation. In Equation 2,
dividing by π ensures that the argument ranges from 0 to 1,
and the square root then changes most quickly when close
to the central axis, with more slowly changing angles when
further away. A result obtained with θ = 25o is shown in
Figure 7, resembling an elm tree. Note that Equation 2 is
used only for the first iteration; later iterations use α1 = 30o,
α2 = 0 and h0 = 1.

Figure 7: Left: the structure after one iteration; right: after
four iterations.

Instead of using incremental rotations to get guiding vec-
tors, we can set vector fields directly. Existing tools for vec-
tor field construction can be deployed, such as field prim-
itives [WH91]. The advantage is that the vector field can
be directly manipulated. The disadvantage is that it may
be difficult to produce the highly divergent fields that yield
natural-looking trees. We have found it more straightforward
to produce believable trees using incremental transforma-
tions. Nonetheless, direct generation of fields of guiding vec-
tors is a possibility.
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We directly generated the vector field to produce the trees
in Figure 8: for examples (a), (b), and (c), we use a helical
field, a rotational field about the z-axis, and a field tracing
upwards along spherical surfaces, respectively. The branches
approximately follow the field directions. Again, note that
the branches are not streamlines; the guiding vectors alter
edge weights, but the edges do not conform to vector field
directions, and branches can deviate from field directions
whenever doing so produces a shorter path. Accordingly,
singularities in the vector field are not as grave a concern
as they would be for streamline-based tree structures.

Figure 8: Tree models from global guiding vector fields.

3.2.2. Early endpoint placement

The placement of the earliest endpoints has a profound effect
on the overall shape of the tree. We recommend placing end-
points in a user-specified volume, akin to the process of Xu
and Mould [XM12]. Figure 9 shows an example: all three
trees use the same parameters, but their first-generation end-
points are placed within different volumes. The final trees,
after four iterations, show the lasting influence of the initial
volume. We have found half-ellipsoids to be useful shapes,
both because they approximate some commonly seen trees
and because they offer a convenient parameterization. Note
the difference between the endpoint selection mechanism
we use and the clipping mechanism of the synthetic topi-
ary [PJM94]; our final trees do not conform very closely to
the specified volume, but produce a less structured and more
organic shape.

Because each endpoint creates a separate path, using mul-
tiple endpoints in the first iteration leads to shrub-like trees.
For a more conventional tree with a central trunk, a single
endpoint should be used. A bounding volume in the second
iteration can then guide the shape of the crown. Figure 10
shows two examples; the first iteration places the trunk, the
second defines a crown shape with an ellipsoid, and later it-
erations add further definition to the tree shape. We discuss
endpoint placement in later iterations next.

3.2.3. Late endpoint placement

While the earliest endpoints govern the general tree shape,
endpoint placement in later iterations determines the further
development of the tree. We must strike a balance between
preserving the initial shape and fleshing out the preliminary
structure of the early iterations. We place later generations of
endpoints on a surface extrapolated from the tree so far. The

Figure 9: Tree models from different bounding volumes.

Figure 10: Trees with trunks: bounding volumes control
endpoint placement in the second iteration.

surface is defined by the set of nodes exactly k hops from
the existing tree, for some parameter k. We use the heuris-
tic that trees grow outwards from the root, and hence order
the surface nodes by the number of edges from the root; we
then take the subset of the surface consisting of its outermost
fraction, for some proportion t. Endpoints are selected from
among the nodes on this surface subset.

By using hop count rather than Euclidean distance, we ex-
ploit the irregular graph structure to obtain an irregular sur-
face shape. The exclusion zone for the initial inflated tree
approximates a sphere but has some variation. Further vari-
ation is also possible, for example by using graph distance
with random weights rather than strictly counting edges. We
opted to parameterize the size of the exclusion zone as a pro-
portion of nodes, making it scale-free.

The general approach is illustrated in Figure 11. The in-
flated tree appears on the left; the exclusion zone and re-
maining surface are shown on the right. Endpoints for the
next iteration are chosen from the portion of the surface ly-
ing outside the exclusion zone. Figure 12 shows trees created
with different exclusion zone sizes. With t = 0.3, endpoints
are concentrated in the outer regions. At t = 0.6, more of the
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tree shape is available for endpoint placement; we consider
this to strike a good balance and have used it for most of our
examples. At t = 1 there is no exclusion zone – all nodes
on the initial surface are potential endpoints – and the entire
tree is covered with small twigs.

Figure 11: Left: the surface of nodes k hops to the source.
Right: the exclusion zone.

Figure 12: From left to right: t = 0.3, t = 0.6, t = 1.

Figure 13: A tree with branches growing downward. Left:
result from two iterations; right: five iterations.

Additional policies can augment the above method to syn-
thesize particular tree shapes. One possibility is to allow only
endpoints that are lower than their source nodes; the result-
ing branches appear to hang down, as in an example shown
in Figure 13.

3.2.4. Endpoint density

Our synthetic trees can be made more sparse or full by
adjusting the density of endpoints. Figure 14 shows three
trees; from left to right, the trees have approximately 1000,
2000 and 4000 endpoints. Since there is a one-to-one corre-
spondence between endpoints and branches, the models with
more endpoints are more filled out.

Figure 14: Tree models with approximately 1000, 2000, and
4000 endpoints from left to right.

4. Results and Evaluation

This section shows several trees created with our method
and provides comparisons with previous tree synthesis al-
gorithms. We begin by showing a set of trees from fixed pa-
rameter settings: the random placement of graph nodes and
endpoints means that similar but distinct trees can be gen-
erated by rerunning the algorithm with the same parameters.
We used the parameters used to generate Figure 6(c) to make
additional ash trees, shown in Figure 15. The trees are recog-
nizably similar, such that an observer could identify them as
belonging to the same virtual species. The sequence demon-
strates the robustness of our method; we display the first six
results we generated, none of which could be deemed a fail-
ure case.

Figure 15: A series of trees generated with fixed parameter
settings but different random choices.

The parameter space for our method is smooth: interme-
diate settings produce intermediate trees. Figure 16 shows
trees obtained by varying bounding volumes and guid-
ing vector rotations. These trees were created with half-
ellipsoids as bounding volumes and used Equation 2 to gov-
ern guiding vectors; from left to right, the half-ellipsoid
bounding volumes have aspect ratios of 1.5, 0.9, 0.5, and
0.3, and θ takes on values of 14o, 20o, 26o, and 32o. The
distributions of twigs and the branch densities are similar
among all trees, but the overall shapes differ; there is a clear
and smooth progression from one to the next.

Varying the parameters more widely can create more dis-
tinct trees, some of which are shown in Figure 17. Although

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



L. Xu & D. Mould / Procedural Tree Modeling with Guiding Vectors

Figure 16: A series of trees with different crowns and branch
shapes.

evaluating the quality of synthetic trees is difficult, in our
judgement the trees have a desirable combination of detail
and plausibility, evoking a sense of looking at real species of
trees. Tree (a) has distinct primary branches, obtained by us-
ing a small number of endpoints in the first iteration. Tree (b)
uses α1 = 30o, α2 =−10o and h0 = 3 in the upper portion,
and α = 8o for the drooping branches of the lower part. The
spindly tree in (c) has short horizontal branches that give the
impression of a dead tree. Tree (d) is intended to resemble a
cottonwood, with broadly spreading branches and substan-
tial empty space. Trees (e) and (i) have initial guiding vector
directions set according to height, pointing more steeply up-
ward as the source point elevation increases. Trees (f) and (h)
are shrub-like, lacking a discernible central trunk, with many
endpoints in the first iteration. Tree (g) shows a birch with di-
vided trunk. Finally, tree (j) is intended to mimic a zelkova;
it does not have small twigs and was generated over only
two iterations. Some simple additional rules were sometimes
employed. For example, tree (d) uses the rule that all end-
points must be higher than their source point, leading to a
pronounced upward trend in the perceived growth pattern.
Tree (a) combines a large number of endpoints in later itera-
tions with few endpoints in the earliest iterations, leading to
visible branch clusters.

A typical result was created in a graph of 150,000 nodes
and has between 4000 and 8000 endpoints. The trees shown
were each generated in under ten seconds once parameters
had been selected. The trees of Figure 15, for example, re-
quired around 9.5 s each: about 6 s to construct the Yao
graph, and another 2 s for path planning, with endpoint se-
lection and other minor tasks making up the balance. Note
that the graph does not necessarily need to be regenerated
for each tree: in an interactive setting, the same graph could
be reused for each experiment. Our timing figures are with
respect to a desktop computer with 2.8 GHz CPU and 3 GB
RAM.

Our approach offers certain benefits. Based on path plan-
ning, the method guarantees the absence of self-intersections
in the final tree. Path planning is widely used, and we
can take advantage of speedups in the base algorithm. The
method is completely automated, with no need for a database
of measurements or exemplars, and no user intervention be-
yond specifying parameters. Tree shape is governed by a few
parameters and by direct spatial and geometric considera-

tions, such as the shape of the bounding geometry for early
endpoint placement. Unlike the unfamiliar parameters some-
times seen in biologically-inspired algorithms, the concrete
parameters we use simplify parameter selection for gener-
ating novel tree types. Once parameter settings have been
chosen, the same settings can be used to create numerous
trees of the same general type, as seen in Figure 15.

The iterative construction process does not constrain the
branch connections, creating a recognizable but loose hierar-
chy. Path planning controlled by guiding vectors produces ir-
regular, natural-looking curves. The process is versatile, ca-
pable of generating a variety of tree shapes; examples appear
in Figures 1 and 17. One key strength of our model is its abil-
ity to create irregular, gnarled trees, an area where particle
tracing struggles. In short, we present a fast, well-rounded,
expressive procedural method for tree modeling.

However, the method has some limitations as well. We
have found our approach to incremental control over guiding
vectors to be useful and powerful, but recognize that not all
users will be comfortable creating vector fields in this way;
we would like to explore alternative mechanisms for setting
guiding vectors in future work. Endpoint placement is con-
trolled indirectly, a consequence of our decision to automate
the tree synthesis process. Likely the largest limitation of the
graph-based approach is its high memory cost, O(n3) in the
graph resolution. With 150,000 graph nodes, the path from
top to bottom is barely 50 edges long. While the irregular
graph structure does a great deal to conceal the low graph
resolution, multiscale or at least variable-resolution graphs
seem warranted.

Lastly, we give a visual comparison of our results with
those of selected earlier methods. Figure 18 compares Neu-
bert et al.’s image-based particle tracing method [NFD07]
with ours. Their tree is highly realistic, corresponding
closely to the photograph on which it is based. We are able
to obtain a very similar tree by placing second-iteration end-
points in a cubic volume and setting α1 to a random value in
the range (30o,120o); we have h0 = 1 and α2 = 0 for straight
branches. In the remaining iterations (3-5), we use α1 = 30o,
α2 = 0 and h0 = 1. Although we used their tree as a vi-
sual reference when setting parameters, our algorithm did
not actually require any image data. We compare with Palu-
bicki et al.’s self-organizing trees [PHL∗09] in Figure 19. We
used a half-ellipsoid as the bounding volume to get a similar
shape, and created branches that slightly bend up with posi-
tive α, akin to Figure 6(d). The overall effect is comparable;
one difference in our method is the visible crookedness of
the branches as they follow the irregular graph. Finally, we
compare with the method of Xu and Mould [XM12], which
shares our graph-based tree modeling philosophy. We cre-
ated a version of their oak tree using a half-ellipsoid shell
for the second-iteration endpoints, and a small rotation angle
for the guiding vector field. The resulting tree has a pleasing
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Figure 17: A variety of different types of trees.

unity of shape, believable sweep of branches, and overall a
cleaner and more attractive appearance.

Our method provides comparable results to existing meth-
ods, and its algorithmic underpinnings are simpler. The guid-
ing vectors offer a subtle yet powerful variation on the gen-
eral path planning technique used previously for tree syn-
thesis and reconstruction, allowing branch tropism to be in-
cluded in this framework. Our suggested parametric assign-
ment of guiding vector direction is flexible and controllable,
while the path planning element enforces a unity over the
resulting tree; although particle tracing techniques can be
equally flexible, they do not naturally create a tree, and when
their flexibility is exploited, they demand extra attention to
ensure that the result is a tree without self-intersections and
other defects. By improving on the results of earlier graph-
based procedural tree modeling to the point where it is com-
petitive with other procedural techniques, we have enlarged
the space of available algorithms for tree modeling.

Figure 18: Left: a model from particle tracing [NFD07].
Right: our tree model.

Figure 19: Left: a self-organizing tree model [PHL∗09].
Right: our tree model.

Figure 20: Left: a model from iterated graphs [XM12].
Right: our tree model.

5. Conclusions and Future Work

We proposed guiding vectors to augment graph-based tree
synthesis. Each node in the graph has a guiding vector; out-
going edges have weights set according to whether the edge
aligns with the guiding vector direction, thus inducing least-
cost paths in the graph to conform to the guiding vector field.
In the graph-based approach, synthetic trees are made up of
collections of least-cost paths.
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We incorporate the guiding vector field creation into the
path planning process: a node’s guiding vector is an incre-
mental rotation of its parent’s. In this way we can not only
specify a full vector field with a rule about the transforma-
tion, we can also ensure that individual branches will tend to
respect the vector field. Although the fields may be highly
divergent, the trees still look natural, as in the case of Fig-
ure 18 with its branches going in multiple directions. Incre-
mental path endpoint placement over multiple iterations cre-
ates a perceptible but non-strict hierarchy. Overall, with judi-
cious placement of path endpoints, we can create elaborate,
believable, high-resolution trees.

Several directions for future work are possible. We have
concentrated on creating individual trees; it is worth investi-
gating constructing multiple trees simultaneously in a single
graph. Adding sketch-based and example-based control over
the endpoint distribution and guiding vector field creation
would be useful. Alternatively, simulation could be used to
create vector fields.

Graph-based methods have been used primarily for recon-
struction, and enlisting guiding vectors to help in that do-
main would be productive. Also, using guiding vectors to
help with other modeling tasks, such as creating rivers or
cracks, is an obvious direction.

Finally, we are also interested in enhancing the existing
graph-based approach. At present, guiding vectors alter the
edge weights unimodally; multimodal edge weight adjust-
ments are possible, so that there can be multiple favored di-
rections. Also, we would like to reduce the memory require-
ments of our approach. The fixed resolution of our graph
simplifies the implementation, but a hierarchical or variable-
resolution graph would reduce the memory usage.
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[MP96] MĚCH R., PRUSINKIEWICZ P.: Visual models of plants
interacting with their environment. In Proceedings of the 23rd
annual conference on Computer graphics and interactive tech-
niques (1996), SIGGRAPH ’96, pp. 397–410. 2

[NFD07] NEUBERT B., FRANKEN T., DEUSSEN O.: Approx-
imate image-based tree-modeling using particle flows. ACM
Trans. Graph. 26, 3 (2007), 88–95. 2, 8, 9

[OOI06] OKABE M., OWADA S., IGARASHI T.: Interactive de-
sign of botanical trees using freehand sketches and example-
based editing. In ACM SIGGRAPH 2006 Courses (2006), SIG-
GRAPH ’06. 3

[PHL∗09] PALUBICKI W., HOREL K., LONGAY S., RUNIONS
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topiary. Computer Graphics 28 (1994), 351–358. 2, 6

[RCSL03] RODKAEW Y., CHONGSTITVATANA P., SIRIPANT S.,
LURSINSAP C.: Particle systems for plant modeling. In Plant
Growth Modeling and Applications (2003), pp. 210–217. 2

[RLP07] RUNIONS A., LANE B., PRUSINKIEWICZ P.: Model-
ing trees with a space colonization algorithm. In Eurographics
Workshop on Natural Phenomena (2007), pp. 63–70. 2

[SPK∗14] STAVA O., PIRK S., KRATT J., CHEN B., MĚCH R.,
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