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Abstract. We present a scheme for the semiautomatic creation of 3D
models through velocity-controlled surface deformations. Our surface
representation consists of oriented points with volatile inter-neighboring
point linkage. The surface is resampled in order to maintain an even
distribution of points. Points created during resampling inherit their
characteristics from their progenitors. Our surface representation and re-
sampling behavior support detailed irregular surfaces with smooth tran-
sitions such as those of organic entities. Surface velocities are set by
the combination of two types of operators, selection and velocity assign-
ment, with operator application managed by a finite state machine. We
demonstrate our scheme with the creation of some branched, fruit-like
and mushroom-like models.

1 Introduction

We present a velocity-based surface deformation control scheme for model cre-
ation. Modeling is achieved by beginning with a simple surface such as a sphere
and progressively deforming it to add shape and detail. Our surfaces are repre-
sented by a collection of oriented points; each point has a link to every other
nearby point. The surface deformation is specified by a set of velocity operators
applied to its points, and these operators are in turn managed by a velocity con-
trol scheme. Our surface deformation system includes automatic spatial density
resampling; surface resampling creates new surface elements that inherit their
attributes from the surface elements which spawned them. Our scheme is suited
to creating models consisting of detailed surfaces with smoothly varying irreg-
ularities, especially organic models such as plants. Figure 1 depicts some of the
above concepts and shows a model created by our method.
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Fig. 1. (a) A spherical point cloud rendering with its inter-point neighboring linkage
and space partitioning. (b,c) Flat surface deformation to demonstrate surface elements’
feature inheritance and normal computation during resampling. (d) An initial sphere.
(e) Sphere deformed to a pear shape. (f) Resulting model with pear texture.

1.1 Previous Work

Surface deformation has been previously investigated for both polygonal mesh
and point-based surface representations. One approach for modifying polygonal
meshes is to deform the mesh components: edges and vertices. For example,
Combaz and Neyret [1] “paint” stressing forces onto the surface, leading to the
elongation or contraction of the edges, and generating folds. Similarly, Lawrence
and Funkhouser [2] “paint” velocities on the surface elements and simulate the
resulting movement to obtain various models. Both their approaches and ours
use the concept of applying velocities to surface elements. We avoid the self-
intersection problem, present in both Combaz and Neyret’s work and Lawrence
and Funkhouser’s, by using spatial subdivision to detect self-intersections and
correct them by fusing samples.

Techniques for rendering point-based surfaces were reported by Pfister et al.
[6] and Rusinkiewicz and Levoy [7] who used oriented points and a space par-
titioning structure to control the level of detail. This type of surface has also
been used as a platform for model creation. Pauly et al. [5], Zwicker et al. [10],
and Szeliski and Tonnesen [9] used oriented particles to define their surfaces
and provided deformation mechanisms where local or inter-point information
was used for resampling purposes. Our approach builds on some of the con-
cepts provided by the previous authors. We determine our surface deformation
based on a collection of velocity operators, rather than requiring a user to paint
velocity or (in the case of PointShop3D [10]) to manipulate the points interac-
tively. Unlike Zwicker et al., but like Lawrence and Funkhouser, we allow points
to have velocities in arbitrary directions. Unlike pure point-based methods, we
include in our surface model neighboring inter-point connectivity information
that is used to generate the final surface model and to inherit point character-
istics during resampling. The surface model of Szeliski and Tonnesen [9] consid-
ers the resampling of the surface when its components are too far away from
each other, but their surface elements suffer from additional displacements be-
cause of the inter-point attracting and repelling forces they used. This situation
does not occur in our framework since the inter-point connectivity information
is used only to resample the surface and not to alter the positions of surface
elements.
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2 Algorithm

We define our surface as a set of oriented points. Each point has a linkage
to its neighbors; two points pi and pj are neighbors if they are closer than ρ
units. The neighboring linkage is later used for surface resampling. Note that
the linkage does not define a polygonal mesh because a triangulation of the
points and their linkage would include intersecting and overlapping triangles;
nevertheless, a manifold surface would be a subset of this triangulation. Our
surface definition lies between the pure point surface definitions [5, 6, 7, 9, 10]
and the more traditional polygonal mesh representations.

We accomplish surface deformation by associating velocities with individual
points of the surface. These velocities are used to update the points’ positions at
each simulation step (see Fig. 2) and since the velocities may produce stretch-
ing and compressing displacements, resampling is required. Dynamic resampling
occurs by reacting to the distance between registered neighbors: if the neigh-
bors are farther than RMax or closer than RMin units then a splitting or fusion
operation is respectively triggered.

The resampling operations generate new intermediate points between the pair
of points whose distance value triggered the operation. The position of the new
point is obtained by linearly interpolating between the old points. Note that our
resampling scheme is different from a polygonal mesh resampling [4] since the
relations between points may not correspond to a triangulated mesh. Our resam-
pling is also different from those of point-only surface representations [5, 8, 10]
because we do not approximate the new points from a subset of points; rather,
we only use the spawning points’ information.

The points created due to a resampling operation inherit all other charac-
teristics from their parents (including position and velocity), but the normal
(orientation) requires a different computation, described as follows and depicted
in Fig. 3. First, we create a plane Pl whose normal is the difference between the
spawning points positions, pdiff = norm(pj − pi). Next, we take an approximate
normal Nle by linearly interpolating the spawning points’ normals. Finally, the

Fig. 2. Surface deformation simulation cycle; note that the individual point velocity
evaluations and surface resampling are executed in parallel
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Fig. 3. (a) Initial surface, (b) Wrong normal Computation, (c) and (d) proper normal,
(e) How normal is computed

normal of the new point is the normalized projection of Nle on the plane Pl, i.e.,
Nnew = norm(Nle − c · pdiff) where c = Nle · pdiff , as shown in Fig. 3.

We will next discuss assigning velocities to the points. We define two types
of operators: Selection Operators (SO) and Velocity Operators (VO); the SO
selects a group of points and the VO changes the velocities of points to which
it is applied. Both types of operators are specified in terms of any measurable
geometric property of the surface or its points, as well as accepting numerical
parameters; for example, “All points reachable by traversing n links from point
pk” would be an SO, and “A point’s velocity is twice its distance to the surface
centroid” a VO. Typically we apply a VO to the points selected by an SO.

We have used two operators in the examples in this paper. The first one is the
“Scaled Unitary Gaussian” operator represented by SUG(pk, σ, d) where pk is a
surface point, σ a standard deviation value, and d a distance. The SUG is a two
stage operator. The first stage is an SO that chooses all points whose Euclidean
distance is less than d units from pk. The second stage modifies the chosen points’
velocities by adding a velocity in the normal direction, scaled by a normalized

Gaussian distribution centered in pk, i.e., vpi = vpi +npi ·e−
dist(pk,pi)

2

2·σ2 . The overall
effect of the SUG operator is to increase the velocity of points surrounding pk

along their normal direction by a magnitude that falls off as e−x2
.

The second operator is the Voronoi Regionalization V R(m, t) operator, which
is an SO only. Using a variant of Lloyd’s algorithm [3], this operator creates
m subsets of points making t passes of the algorithm; the subsets correspond
to centroidal Voronoi regions. Applying this operator to a model results in a
partition of the model, which can later be used by another operator. For example,
in Fig. 4.a we can see the results of applying V R(13, 1) and in Fig. 4.b we see
V R(13, 10). In Fig. 4.c we have used the centers of the regions created with
V R(13, 10), say p1, . . . , p13, and applied SUG(pi, 0.9, 8.0) i = 1, . . . , 13. In Fig.
4.c the points color intensities are proportional to their velocities. Finally, Fig.
4.d shows the surface after it has evolved into a surface with Voronoi-distributed
bumps; each bump has a smooth transition to the flat surface.

Even though just having a library of operators would be very useful for the
creation of different models, a user would still need to apply them individually.
As part of our scheme we provide an Operator Application Manager (OAM)
to control which operators are applied and when and where they are applied.
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Fig. 4. Simple deformation operators used in series to achieve a complex deformation

Fig. 5. Above, an OAM net controlling the operators to be applied. Below, application
of the OAM net

The OAM controls the operators through a finite state machine. An OAM is
similar to a Petri Net, the difference being that the transition elements in the
OAM can be fired when only one of the input states contains a token. The
OAM net transitions are constantly monitoring a specified point cloud metric;
possible metrics include maximum height, number of subregions, or time elapsed.
The OAM net states can be associated with a VO. Figure 5 shows an OAM
net that is used to grow a branch that later twists to a given angle. With the
proper application of the operators and the OAM nets, our system can simulate
a variety of effects. Global effects like gravity, local effects such as tropism, or
local modifications to the mesh such as branches can all be described within our
system.

We next describe the behavior of the OAM net in Fig. 5. This net contains
only one token, initially placed in the state Initial seed.

1. State Initial seed – Applies the SO CreateRadialSubset(Pi, r) which selects
the reachable points in a radius r from Pi and records the current position
of Pi, −→p0 = −→pi .

2. Transition T0 – Timed transition firing after 0 seconds.
3. State Grow half sphere – Applies a VO that assigns to each of the points

selected in the previous state a normalized velocity proportional to the dif-
ference of their distance to Pi and r, i.e., −−→

Vnew = −→
N · (r − ‖−→px − −→pi‖)

4. Transition T1 – Fires when the distances from all selected points to the
original position of Pi, −→p0, are greater than r.

5. State Grow stem – Applies a VO setting the selected points’ velocities to
have the same direction as their normals.
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6. Transition T2 – Use an VO to make the selected points’ velocities equal
to zero and compute a pivoting place in space −→

T = −→px − (Yoffset · ̂j) where
Yoffset ≥ r.

7. State Twisting – Rotates the selected points upward using pivot −→
T .

8. Transition T3 – Fires when all the selected points have rotated γ degrees.
9. State Twisting done – Applies the same operator used in state Grow stem.

10. Transition T4 – Fires after t4 seconds
11. State Finished – Marks the end.

All of the concepts described in this section have been implemented in a soft-
ware tool. This tool has an interface similar to that of Lawrence and Funkhouser
[2] with which a user can specify the parameters of an initial surface. The surface
can be deformed by either applying velocities to individual points selected by
the user or applying the deformation operators. The deformation is controlled
by the user and can be paused at any time; also the user can apply new velocities
or operators at any moment. This software tool was used to create the models
shown in the following section.

3 Results

Using the surface specification, operators, and OAM defined previously, we have
created a set of models. Figure 6.a-f depicts the steps involved in the creation of
an apple model. First, following a ring path, an SUG operator is applied to the
upper half of the initial sphere. Next, four instances of the same operator are ap-
plied on the lower half plus a negative weighted SUG is applied to the lowermost
point, creating a crown-like section. Figure 6.c shows the surface evolved in time.
Two additional Gaussian-like velocity distributions are applied to the upper half
to mimic the heart-shaped contour that some apples present (Fig. 6.d). Figure
6.e-f shows the final point cloud and its connectivity mesh. More complex models
can be obtained if the operators are applied to subsets of the point cloud. Figure
6.g-l shows the steps to create the basic structure of mushroom-like models.

Fig. 6. (a-f) Apple-like model creation, (g-l) Mushroom-like models structure creation
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Fig. 7. (a-d) Fruit-like models, (e-h) Mushroom model detail creation, (i-l) Rotated
views of mushroom model, (m-o) Close ups of mushroom model

Additional examples created with similar techniques are shown in Fig. 7.a-c.
Figure 7.d was generated with two of the OAM nets shown Fig. 5. One of our
favorite models is shown in Fig. 7.e-n. Initially we have a mushroom model with
a stem and an egg-shaped cap to which a Voronoi regionalization operator is ap-
plied. Figure 7.e-g shows the result of the Voronoi regionalization operator with
initial seeds randomly placed on the stem’s base. In Fig. 7.h, the points’ velocity
is set as a function of their distance to the center of their respective Voronoi
region; if the velocity is greater than a certain threshold, then the velocity to
apply is zero. Finally, in Fig. 7.m and Fig. 7.n we can see two different models
created by varying the parameters previously described as well as a different
initial mushroom-like structure. The fruit models contain around 1500 points
and the mushrooms have about 27000. Simulation times for the fruits were ap-
proximately 5 seconds, and for the mushrooms of Fig. 7.e-n, approximately 30
minutes. All models were created on a 3 GHz Pentium 4 computer with 1 GB
RAM.

4 Conclusions and Future work

We have presented a novel model for surface deformation and its use with a semi-
automatic model generation scheme. The surface specification can be considered
a hybrid between point based surfaces and triangulated meshes because the
surface is represented by a point cloud with connections between points. We do
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not have to maintain consistency as with a mesh, but we do have neighborhood
information for performing local operations on the surface, unlike a pure point
cloud. We have defined some basic operators and provided specific detail on two
specialized operators: application of a Gaussian velocity distribution and Voronoi
regionalization of point subsets. We showed some models whose surfaces have
irregularities with smooth transitions, the type of surfaces commonly present in
natural models. As part of our continuing research we are looking to implement
different operators that reflect other natural phenomena of growing entities, such
as bark and lichen growth, and we are also aiming to simulate aging effects on
surfaces like cracking and erosion.
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